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Abstract

From Riemannian geometric point of view, one of the most fundamental problems in the study
of Lagrangian submanifolds is the classification of Lagrangian immersions of real space forms in
complex space forms. In earlier papers [B.Y. Chen, Maslovian Lagrangian surfaces of constant cur-
vature in complex projective or complex hyperbolic planes, Math. Nachr.; B.Y. Chen, Classification
of Lagrangian surfaces of constant curvature in complex projective planes, J. Geom. Phys. 55 (2005)
399–439], the author classified Lagrangian surfaces of constant curvature in complex projective plane
and in complex Euclidean plane. The purpose of this article is thus to provide sixty-one families of
Lagrangian surfaces of constant curvature inCH2 towards the complete classification of Lagrangian
surfaces of constant curvature inCH2. As an immediate by-product, many new examples of La-
grangian surfaces of constant curvature inCH2 are discovered.
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1. Introduction

A submanifoldM of a Kaehler manifoldM̃ is called Lagrangian if the almost complex
structureJof M̃ interchanges each tangent space ofMwith its corresponding normal space.
An important problem in the study of Lagrangian submanifolds is to construct non-trivial
new examples.

From Riemannian geometric point of view, one of the most fundamental problems is to
classify Lagrangian isometric immersions of real space forms into complex space forms.
Such Lagrangian submanifolds are either totally geodesic or flat if they were minimal
[9,11] (for indefinite case, this was done in a series of articles[10,12,13,15]). For non-
minimal Lagrangian immersions, this problem has been studied in[2–5,7,8]among others.
In particular, Lagrangian surfaces of constant curvature in complex projective plane and in
complex Euclidean plane have been determined in[2,4,5].

The purpose of this article is thus to provide sixty-one families of Lagrangian surfaces of
constant curvature inCH2 toward the complete classification of such Lagrangian surfaces in
CH2. As an immediate by-product, many interesting new examples of Lagrangian surfaces
of constant curvature inCH2 are discovered.

2. Preprimaries

Let M̃n(4c) denote a complete simply-connected Kaehlern-manifoldM̃n(4c) with con-
stant holomorphic sectional curvature 4c and letM be a Lagrangian submanifold iñMn(4c).
We denote the Riemannian connections ofM andM̃n(4c) by ∇ and∇̃, respectively.

The formulas of Gauss and Weingarten are given, respectively, by

∇̃XY = ∇XY + h(X, Y ), (2.1)

∇̃Xξ = −AξX+DXξ (2.2)

for tangent vector fieldsX, Y and normal vector fieldξ, whereD is the connection
on the normal bundle. The second fundamental formh is related to the shape opera-
tor Aξ by 〈h(X, Y ), ξ〉 = 〈AξX, Y〉. The mean curvature vectorH of M is defined by
H = (1/n) traceh. A pointp ∈ M is called minimal ifH vanishes atp.

For Lagrangian submanifoldsM in M̃n(4c) we have (cf.[9])

DXJY = J∇XY, (2.3)

〈h(X, Y ), JZ〉 = 〈h(Y,Z), JX〉 = 〈h(Z,X), JY〉. (2.4)

If we denote the Riemann curvature tensor ofM byR, then the equations of Gauss and
Codazzi are given, respectively, by

〈R(X, Y )Z,W〉 = 〈h(X,W), h(Y,Z)〉 − 〈h(X,Z), h(Y,W)〉
+ c(〈X,W〉〈Y,Z〉 − 〈X,Z〉〈Y,W〉), (2.5)

(∇̄Xh)(Y,Z) = (∇̄Yh)(X,Z), (2.6)



B.-Y. Chen / Journal of Geometry and Physics 55 (2005) 399–439 401

whereX, Y, Z,Ware tangent toM and∇h is defined by

(∇h)(X, Y,Z) = DXh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ). (2.7)

We recall a construction method of Lagrangian submanifolds from[14].
Consider the complex number (n+ 1)-spaceCn+1

1 with the pseudo-Euclidean metric
g0 = −dz1 dz̄1 +∑n+1

j=2 dzj dz̄j. Put

H2n+1
1 (−1) = {z ∈ Cn+1

1 : 〈z, z〉 = −1}.

Let H1
1 = {λ ∈ C : λλ̄ = 1}. There is anH1

1-action onH2n+1
1 (−1), z �→ λz. At each

point z ∈ H2n+1
1 (−1), iz is tangent to the flow of the action. The orbit lies in the negative

definite plane spanned byzand iz. The quotient spaceH2n+1
1 / ∼ is the complex hyperbolic

space CHn(−4) with constant holomorphic sectional curvature−4, whose complex structure
is induced from the complex structure onCn+1

1 via Hopf’s fibration:π : H2n+1
1 (−1) →

CHn(−4).
An isometric immersionf : M → H2n+1

1 (−1) is calledLegendrianif ξ is normal to
f∗(TM) and 〈φ(f∗(TM)), f∗(TM)〉 = 0, where〈·, ·〉 denotes the inner product onCn+1

1 .
The vectors ofH2n+1

1 (−1) normal toξ at a pointz define the horizontal subspaceHz
of the Hopf fibrationπ : H2n+1

1 (−1) → CHn(−4). Therefore, the condition “ξ is normal
to f∗(TM)” means thatf is horizontal; thus it describes an integral manifold of maximal
dimension of the contact distributionH.

Let ψ : M → CHn(−4) be a Lagrangian isometric immersion. Then there is an iso-
metric covering mapτ : M̂ → M and a Legendrian immersionf : M̂ → H2n+1

1 (−1) such
thatψ(τ) = π(f ). Hence every Lagrangian immersion can be lifted locally (or globally
if we assume the manifold is simply connected) to a Legendrian immersion of the same
Riemannian manifold.

Conversely, suppose thatf : M̂ → H2n+1
1 (−1) is a Legendrian immersion. Thenψ =

π(f ) : M → CHn(−4) is again an isometric immersion, which is Lagrangian. Under this
correspondence, the second fundamental formshf andhψ of f andψ satisfyπ∗hf = hψ.
Moreover,hf is horizontal with respect toπ. We shall denotehf andhψ simply byh.

Let L : M → H2n+1
1 (−1) ⊂ Cn+1

1 be an isometric immersion. Denote by∇̂ and∇ the
Levi-Civita connections ofCn+1

1 andM, respectively. Lethdenote the second fundamental
form ofM in H2n+1

1 (1). Then we have

∇̂XY = ∇XY + h(X, Y ) + (X, Y〉L (2.8)

for vector fieldsX, Y tangent toM.

3. Special Legendre curves and associated special Legendre curves

Let S2n−1(c) = {z ∈ Cn : 〈z, z〉 = c−1 > 0}, S2n−1
2 (c) = {z ∈ Cn1 : 〈z, z〉 = c−1 > 0}

andH2n+1
1 (c) = {z ∈ Cn+1

1 : 〈z, z〉 = c−1 < 0}. ThenS2n−1(c), S2n−1
2 (c) andH2n+1

1 (c) are
of constant sectional curvaturec.
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A curvesz = z(s) in S2n−1(c),H2n−1
1 (c), orS2n−1

2 (c) is calledLegendreif 〈z′(t), iz(t)〉 =
0 holds. Putεv = 1 if v is space-like andεv = −1 if v is time-like.

If z(s) be a unit speed Legendre curve inS5(c) ⊂ C3 (or in H5
1(c) ⊂ C3

1 or in
S5

2(c) ⊂ C3
1), then z/|z|, iz/|z|, z′, iz′ are orthonormal vector fields defined along the

curve. Thus, there exists a unit normal vector fieldPz along the Legendre curve such
thatz/|z|, iz/|z|, z′, iz′, Pz, iPz form an orthonormal frame along the curve. By differenti-
ating 〈z′(s), iz(s)〉 = 0, 〈z′(s), z(s)〉 = 0, we get〈z′′, iz〉 = 0, 〈z′′, z〉 = −εz′ , Thus,z′′ can
be expressed as

z′′(s) = iψ(s)z′(s) − εz′cz(s) − a(s)Pz(s) + b(s)iPz(s) (3.1)

for some real-valued functionsψ, a, b. The Legendre curvez = z(s) is calledspecialif the
expression(3.1)reduces to

z′′(s) = iψ(s)z′(s) − εz′cz(s) − a(s)Pz(s), (3.2)

wherePz is a unit parallel normal vector field, i.e.,P ′
z(s) = µ(s)z′(s) for µ = aεz′εPz .

If a Legendre curvez : I → H5
1(c) ⊂ C3

1 satisfiesz′′(s) = iψ(s)z′(s) + c1 for a light-like
vectorc1, thenz is automatically special Legendre withPz = c1 + cz. A simple such exam-
ple inH5

1(−1) is given byz(s) = (2 + is− eis,1 − eis,eis − is− 1) with c1 = (1,0,−1).
It was proved in[1] that, for any given functionsψ(s) �= 0 anda(s) defined on an open

interval I, there exists a special Legendre curvez : I → S5(c) ⊂ C3
1 satisfying(3.2). It

follows from (3.2) that if the special Legendre curve does not lie in any proper linear
complex subspace ofC3

1, thena = a(s) is not identical zero.
For a unit speed special Legendre curvez = z(s), s ∈ I, satisfying(3.2), Pz is a curve in

S5(1) ⊂ C3 (or inH5
1(−1) or inS5

2(1) ofC3
1). SincePz is a parallel normal vector field, we

haveP ′
z(s) = µ(s)z′(s) with µ = aεz′εPz not identical zero. Lett be an arclength function

of Pz onI ′ = {s ∈ I : a(s) �= 0} with P ′
z(t) = z′(s). Then we getµ = dt/ds. From these we

find z′′(s) = µP ′′
z (t). Substituting these into(3.2)gives

P ′′
z (t) = iψ̃(t)P ′

z(t) − εz′εPzPz(t) − ã(t)z(s(t)) (3.3)

on I ′, whereψ̃(t) = (ψµ−1)(s(t)), ã(t) = cεPza−1(s(t)). Sincez′(t) = µ−1P ′(t), (3.3) im-
plies thatPz is special Legendre defined onI ′. We callPz theassociated special Legendre
curveof z. It follows from (3.3) thatz/|z| is the associated special Legendre curve ofPz.
Consequently, we have the following lemma.

Lemma 3.1. If z = z(s), s ∈ I, is a unit speed special Legendre curve inS5(1) ⊂ C3

(or in H5
1(−1) or in S5

2(1) of C3
1) satisfying(3.2), thenPz is a special Legendre curve

on I ′ = {s ∈ I : a(s) �= 0}. Moreover, z andPz are the corresponding associated special
Legendre curves of each other onI ′.

Let z(s), w(s) be two Legendre curves. Ifw(s) is perpendicular to the complex plane
C2
z(s) spanned byz(s), iz(s), z′(s), iz′(s); and alsoz(s) is perpendicular toC2

w(s) spanned by
w(s), iw(s), w′(s), iw′(s) at eachs, thenz, w are said to form anorthogonal Legendre pair.
Whenz is a special Legendre curve withPz as its associated special Legendre curve, the
curveszandPz from an orthogonal Legendre pair automatically.

For Legendre curves we have the following lemma obtained in[4].
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Lemma 3.2. If z : I → S3(c) ⊂ C2 (respectively, z : I → H3
1(c) ⊂ C2

1) is a unit speed
curve satisfyingz′′(t) − iψ(t)z′(t) + cz(t) = 0 for some non-zero real-valued functionψ,
thenz = z(t) is a Legendre curve.
Conversely, if z : I → S3(1) ⊂ C2 (respectively, z : I → H3

1(c) ⊂ C2
1) is a unit speed

Legendre curve, then it satisfiesz′′(t) − iψ(t)z′(t) + cz(t) = 0withψ(t) = εz′ 〈z′′(t), iz′(t)〉.

The light coneLC in Cn1 is defined byLC = {z ∈ Cn1 : 〈z, z〉 = 0}. A unit speed curve
z(s) lying inLC is calledLegendreif we have〈iz′, z〉 = 0. For a unit speed Legendre curvez
inLC, we have〈z, z〉 = 〈z, z′〉 = 〈z, iz′〉 = 〈iz, z′′〉 = 〈z′, z′′〉 = 0. The Legendre curvez in
LC is calledspecial Legendreif 〈iz′, z′′〉 = 0 holds. For a unit speed special Legendre curve
z(s), {z(s), iz(s), z′(s), iz′(s), z′′(s), iz′′(s)} form a basis ofC3

1. Thesquared curvatureκ2 of
z is defined to beκ2 = 〈z′′, z′′〉 and itsLegendre torsion̂τ is defined bŷτ = εz′ 〈z′′, iz′′′〉.

We also need the following lemma from[4].

Lemma 3.3. If z : I → LC ⊂ C3
1 is a unit speed special Legendre curve in the light cone

LC, then it satisfies

z′′′(s) + εz′κ2(s)z′(s) + 1
2εz′ (κ

2)′z(s) − iτ̂(s)z(s) = 0. (3.4)

Conversely, if a unit speed curve z(s) in LC satisfying(3.4) has nowhere vanishing
squared curvatureκ2 and Legendre torsion̂τ, then it is special Legendre.

4. Main theorem

The main result of this paper is the following theorem.

Theorem 4.1. There exist61 families of Lagrangian surfaces of constant curvature in the
complex hyperbolic planeCH2(−4)with constant holomorphic sectional curvature−4:

(1) Totally geodesic Lagrangian surfaces of constant curvature−1.
(2) Lagrangian surfaces of curvature−1 defined byπ ◦ L with

L(s, y) = (coshy, z1(s) sinhy, z2(s) sinhy),

where z(s) is a unit speed Legendre curve inS3(1) ⊂ C2.
(3) Lagrangian surfaces of curvature−1 defined byπ ◦ L with

L(s, y) = (z1(s) coshy, z2(s) coshy, sinhy),

where z(s) is a space-like unit speed Legendre curve inH3
1(−1) ⊂ C2

1.
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(4) Lagrangian surfaces of curvature−1 defined byπ ◦ L with

L = z(s) coshy + Pz(s) sinhy,

where z(s) is a unit speed special Legendre curve inH5
1(−1) ⊂ C3

1 with Pz as its
associated special Legendre curve.

(5) Lagrangian surfaces of curvature−1 defined byπ ◦ L with

L = z(s) ey + iψz′(s) sinhy − z′′(s) sinhy,

whereψ(s) is a positive function andz = z(s) is a unit speed special Legendre curve
in H5

1(−1) ⊂ C3
1 satisfyingz

′′(s) = iψ(s)z′(s) + z− Pz with its associated special
Legendre curve given byPz = z− c1 for some like-like vectorc1.

(6) Lagrangian surfaces of positive curvaturea2 defined byπ ◦ L with

L(s, y) = ei(b−a)sz(y) + ei(b+a)sw(y)

with a = √
b2 − 1, b > 1, where {z(y), w(y)} is an orthogonal pair of unit speed

space-like Legendre curves inH5
1(−2a/(a+ b)) andS5

2(2a/(b− a)) of C3
1, respec-

tively, and z(y) and w(y) are related, via a non-constant functionp = p(y), by

z′ eip = w′ e−ip and (z′′ + 4a(a− b)z) eip + (w′′ + 4a(a+ b)w) e−ip = 0.

(7) Lagrangian surfaces of negative curvature−k2 defined byπ ◦ L with

L(s, y) =
(
k + ib

2k

)
eibs−ksz′′(x) + (1 − (k + ib)2 e−2ks−2p(x)) eibs+ksz(x),

wherek = √
1 − b2, b ∈ (0,1), p(x) is a non-constant real-valued function and z(x)

is a space-like unit speed special Legendre curve with squared curvatureκ2 =
−4k2 e−2p(x) in the light coneLC satisfying

z′′′(x) + κ2(x)z′(x) + 4k(k + ib)p′(x) e−2p(x)z(x) = 0.

(8) Lagrangian surfaces of negative curvature−k2 defined byπ ◦ L with

L(s, y) =
(
k + ib

2k

)
eibs−ksz′′(x) + (1 − (k + ib)2 e−2ks−2p(x)) eibs+ksz(x),

wherek = √
1 − b2,b ∈ (0,1),p(x) is anon-constant real-valued functionandz(x) is a

space-like unit speed special Legendre curve with squared curvatureκ2 = 4k2 e−2p(x)

in the light coneLC satisfying

z′′′(x) + κ2(x)z′(x) − 4k(k + ib)p′(x) e−2p(x)z(x) = 0.
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(9) Flat Lagrangian surfaces defined byπ ◦ L with

L = eis(iz′′(t) + (i + s+ k(t))z(t)),

wherez = z(t) is a space-like unit speed special Legendre curve in the light coneLC
ofC3

1, whose squared curvatureκ2(t) is 1.
(10) Lagrangian surfaces of positive curvaturea2 defined byπ ◦ L with

L = eibs

a2

(
cos(as)(b2 − cos(at) − iab sin(as), a sin(as)

+2ib cos(as) sin2
(at

2

)
, a cos(as) sin(at)

)
, a =

√
b2 − 1, b > 1.

(11) The flat Lagrangian surface defined byπ ◦ L with

L(s, t) = eis
(

1 − is+ t2

2
, s+ it2

2
, t

)
.

(12) The flat Lagrangian surface defined byπ ◦ L with

L = eis(1 − is, s cost, s sint).

(13) Lagrangian surfaces of negative curvature−k2 defined byπ ◦ L with

L=eibs

k

(
cosh(ks) cosh

(
kt

a

)
, cosh(ks) sinh

(
kt

a

)
, k sinh(ks) − ib cosh(ks)

)
,

with k = √
1 − b2, b ∈ (0,1), a > 0.

(14) Lagrangian surfaces of negative curvature−k2 defined byπ ◦ L with

L = eibs

k

(
ik cosh(ks) + b sinh(ks), cos

(
kt

a

)
sinh(ks), sin

(
kt

a

)
sinh(ks)

)
,

with k = √
1 − b2, b ∈ (0,1), a > 0.

(15) Lagrangian surfaces of negative curvature−k2 defined byπ ◦ L with

L=eibs−ks

2k
(k(1 + e2ks(1 + t2))+ib(1 − e2ks),2k e2kst,e2ks(1+k(ib−k)t2) − 1),

k =
√

1 − b2, b ∈ (0,1).

(16) Flat Lagrangian surfaces defined byπ ◦ L with

L = 1

b
(ei

√
1−b2s cosht,ei

√
1−b2s sinht,

√
1 − b2 eis/

√
1−b2

), b ∈ (0,1).
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(17) Flat Lagrangian surfaces defined byπ ◦ L with

L = 1

b
(
√

1 + b2 eis/
√

1+b2
,ei

√
1+b2s cost,ei

√
1+b2s sint), b > 0.

(18) The flat Lagrangian surface defined byπ ◦ L with

L = ei
√
s2−1

2s ei tan−1(
√
s2−1)

(2i + is2(1 − 2t + 2t2) − 2
√
s2 − 1

+ 2s2 tan−1
√
s2 − 1, 2(i + is2t(t − 1) −

√
s2 − 1

+ s2 tan−1
√
s2 − 1), s2(1 − 2t)).

(19) The flat Lagrangian surface defined byπ ◦ L with

L = ei
√
s2+1

√
2

( √
s2 + 2

ei tan−1(
√
s2+1)

,
s1+i cos(

√
2t)

(1 + √
s2 + 1)i

,
s1+i sin(

√
2t)

(1 + √
s2 + 1)i

)
.

(20) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L = ebs+ib−1k tanh−1(
√

e−2bs+k2/k)(
√

1 + e−2bse−i tan−1(
√

e−2bs+k2/b),

cost e−ib−1
√

e−2bs+k2
, sint e−ib−1

√
e−2bs+k2

), k =
√

1 − b2, b ∈ (0,1).

(21) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L = ebs+ib−1k tanh−1(
√
k2−e−2bs/k)

×
(

cosht

eib−1
√
k2−e−2bs

,
sinht

eib−1
√
k2−e−2bs

,

√
1 − e−2bs

ei tan−1(
√
k2−e−2bs/b)

)
,

k =
√

1 − b2, b ∈ (0,1).

(22) Lagrangian surfaces of positive curvatureb2 defined byπ ◦ L with

L = (
√
a2 cos2(bs) − 1 + ia sin(bs))a/b

ba/b
√

1 − b2

( √
cos2(bs) + b2 − 1

ei tan−1((b sin(bs))/
√
a2 cos2(bs)−1)

,

cos(bs) cos(
√
b2 − 1t)

eib−1 tan−1((sin(bs))/
√
a2 cos2(bs)−1)

,
cos(bs) sin(

√
b2 − 1t)

eib−1 tan−1((sin(bs))/
√
a2 cos2(bs)−1)

)
,

with a = √
1 + b2, b > 1.
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(23) Lagrangian surfaces of positive curvatureb2 defined byπ ◦ L with

L = (
√
a2 cos2(bs) − 1 + ia sin(bs))a/b

ba/b
√

1 − b2

(
cos(bs) cosh(

√
1 − b2t)

eib−1 tan−1((sin(bs))/
√
a2 cos2(bs)−1)

,

cos(bs) sinh(
√

1 − b2t)

eib−1 tan−1((sin(bs))/
√
a2 cos2(bs)−1)

,

√
cos2(bs) + b2 − 1

ei tan−1((b sin(bs))/
√
a2 cos2(bs)−1)

)
,

with a = √
1 + b2, b ∈ (0,1).

(24) Lagrangian surfaces of positive curvatureb2 defined byπ ◦ L with

L = 1

a

(√
a2 + cos2(bs)(

√
a2 cos2(bs) + 1 + ia sin(bs))a/b

(1 + a2)a/2b ei tan−1(b sin(bs)/
√
a2 cos2(bs)+1)

,

cos(bs) cos(at) eib−1 tanh−1((sin(bs))/
√
a2 cos2(bs)+1)+iab−1 sin−1(a sin(bs)/

√
a2+1),

cos(bs) sin(at) eib−1 tanh−1((sin(bs))/
√
a2 cos2(bs)+1)+iab−1 sin−1(a sin(bs)/

√
a2+1)

)
,

with a = √
1 + b2, b > 0.

(25) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L =

eiab−1 tan−1(a sinh(bs)/

√
a2+k2 cosh2(bs)) cosh(bs) cosh(

√
b2 − a2t/a)√

b2 − a2(
√
a2 + k2 cosh2(bs) − k sinh(bs))ik/b

,

eiab−1 tan−1(a sinh(bs)/
√
a2+k2 cosh2(bs)) cosh(bs) sinh(

√
b2 − a2t/a)√

b2 − a2(
√
a2 + k2 cosh2(bs) − k sinh(bs))ik/b

,

√
a2 − b2 + cosh2(bs) ei tan−1(b sinh(bs)/

√
a2+k2 cosh2(bs))

√
b2 − a2(

√
a2 + k2 cosh2(bs) − k sinh(bs))ik/b


 ,

with k = √
1 − b2, b > a > 0.

(26) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L = (
√
a2 cos2(bs) − 1 + ia sin(bs))a/b

ba/b
√

1 − b2

(
cos(bs) cosh(

√
1 − b2t)

eib−1 tan−1((sin(bs))/
√
a2 cos2(bs)−1)

,

cos(bs) sinh(
√

1 − b2t)

eib−1 tan−1((sin(bs))/
√
a2 cos2(bs)−1)

,

√
cos2(bs) + b2 − 1

ei tan−1((b sin(bs))/
√
a2 cos2(bs)−1)

)
,

with a = √
1 + b2, b ∈ (0,1).
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(27) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L = (
√
k2 cosh2(bs) − a2 − k sinh(bs))−ik/b

√
a2 + b2

×
(

cosh(bs) cosh(
√
a2 + b2t/a)

eiab−1 tanh−1(a sinh(bs)/
√
k2 cosh2(bs)−a2)

,

cosh(bs) sinh(
√
a2 + b2t/a)

eiab−1 tanh−1(a sinh(bs)/
√
k2 cosh2(bs)−a2)

, i
√
k2 cosh2(bs)−a2−b sinh(bs)

)
,

with k = √
1 − b2, b ∈ (0,1), a > 0.

(28) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L = (
√
a2 + k2 sinh2(bs) + k cosh(bs))ik/b√

a2 + b2

(
i
√
a2 + k2 sinh2(bs) − b cosh(bs),

sinh(bs) cos(
√
a2+b2t/a)

eiab−1 tanh−1(a cosh(bs)/
√
a2+k2 sinh2(bs))

,
sinh(bs) sin(

√
a2+b2t/a)

eiab−1 tanh−1(a cosh(bs)/
√
a2+k2 sinh2(bs))

)
,

with k = √
1 − b2, b ∈ (0,1), a > 0.

(29) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L = (
√
k2 sinh2(bs) − a2 + k cosh(bs))ik/b√

a2 − b2

×
(

sinh(bs) cosh(
√
a2 − b2t/a)

e−iab−1 tan−1(a cosh(bs)/
√
k2 sinh2(bs)−a2)

, sinh(bs)

× sinh(
√
a2 − b2t/a) eiab−1 tan−1(a cosh(bs)/

√
k2 sinh2(bs)−a2),

i
√
k2 sinh2 bs− a2 − b cosh(bs)

)
,

with k = √
1 − b2, b ∈ (0,1), a > b.

(30) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L = (
√
k2 sinh2(bs) − a2 + k cosh(bs))ik/b√

b2 − a2

×
(

i
√
k2 sinh2 bs− a2 − b cosh(bs), sinh(bs) cos(

√
b2 − a2t/a)

× eiab−1 tan−1(a cosh(bs)/
√
k2 sinh2(bs)−a2),

sinh(bs) sin(
√
b2 − a2t/a) eiab−1 tan−1(a cosh(bs)/

√
k2 sinh2(bs)−a2)

)
,

with k = √
1 − b2,0< a < b < 1.
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(31) Lagrangian surfaces of positive curvatureb2 defined byπ ◦ L with

L = ei(c−b)s
(
b+ c

2b
e−2iθ0 + c − b

2b
e2ibs, (1 + e2i(bs+θ0))z(t)

)
, θ0 ∈ R,

wherec = √
1 + b2 and z(t) is a Legendre curve of constant speed1/2 in S3(4b2).

(32) Lagrangian surfaces of positive curvatureb2 defined byπ ◦ L with

L(s, t) = ei(c−b)sz(t) + ei(c+b)sw(t), c =
√

1 + b2,

wherez : I → H5
1(−2b/(b+ c)) ⊂ C3

1 is an arbitrary space-like special Legendre
curve with speed1/2 and w : I → S5(2b/(c − b)) ⊂ C3

1 is the associated special
Legendre curve of z with speed1/2.

(33) Flat Lagrangian surfaces defined byπ ◦ L with

L(s, t) = eis(1 − is, sz(t)),

where z(t) is a unit speed Legendre curve inS3(1) ⊂ C2.
(34) Flat Lagrangian surfaces defined byπ ◦ L with

L = eis

(
bs− t√
1 + b2

+ i
√

1 + b2

b
,
bs− t√
1 + b2

,
eibt

b

)
, R � b �= 0.

(35) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L = e(b+ic)s

2b
(2b(e2θ0 + e−2bs)z(t), (b− ic) eθ0 − (b+ ic) e−2bs−θ0),

wherec = √
1 − b2, b ∈ (0,1),andz(t) = (z1(t), z2(t)) is a space-likeLegendre curve

in H3
1(−4b2 e2θ0) with constant speede−θ0/2.

(36) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L(s, y) = ei
√

1−b2s(e−bsz(y) + ebsw(y)), b ∈ (0,1),

where z(y) and w(y) are space-like Legendre curves of speed1 andeθ, lying the light
coneLC related by

z′′(y) − if̃ (y)z′(y) − 2b(b− i
√

1 − b2) e2θz(y) − 2b(b+ i
√

1 − b2)w(y) = 0,

w′(y) = e2θz′(y), 〈z′, w〉 = 〈iz′, w〉 = 0, 〈z,w〉 = −1

2
, 〈iz,w〉 =

√
1 − b2

2b

for some non-zero functioñf (y) and non-constant functionθ.
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(37) Lagrangian surfaces of curvature−1 defined byπ ◦ L with

L = c1
{

i + 2(1+ i sinhs) tan−1
(

tanh
( s

2

))}
+ (1 + i sinhs)z(t),

wherec1 is a light-like vector, z(t) is a unit speed space-like Legendre curve lying the
light coneLC andc1, z(t) are related by

z′′(t) − if (t)z′(t) + 2ic1 = 0, 〈c1, z〉 = 0, 〈c1, iz〉 = 1
2

for some non-zero function f.
(38) Lagrangian surfaces of positive curvatureb2, b2 > c2, defined byπ ◦ L with

L=
(

(a2 − c2)−a/2b√
b2−c2 (

√
a2 cos2 bs− c2−ib sinbs)(

√
a2 cos2 bs− c2+ia sinbs)a/b,

z(t)(cosbs) exp i

{
a

b
sin−1

(
a sinbs√
a2 − c2

)
− c

b
tan−1

(
c tanbs√

a2 − c2 sec2 bs

)})
,

wherea = √
1 + b2 and z(t) is a unit speed space-like Legendre curve lying inS3(b2 −

c2) ⊂ C2.
(39) Lagrangian surfaces of positive curvatureb2, b2 < c2, defined byπ ◦ L with

L=
(
z(t)(cosbs) exp i

{
a

b
sin−1

(
a sinbs√
a2−c2

)
− c
b

tan−1
(

c tanbs√
a2 − c2 sec2 bs

)}
,

(a2 − c2)−a/2b√
b2 − c2 (

√
a2 cos2 bs− c2 − ib sinbs)(

√
a2 cos2 bs− c2 + ia sinbs)a/b

)
,

where z(t) is a unit speed space-like Legendre curve lying in aH3
1(b2 − c2) ⊂ C2

1 and
a = √

1 + b2.
(40) Lagrangian surfaces of positive curvatureb2, b > 0,defined byπ ◦ L with

L = (cosbs
√

1 − b2 tan2 bs− ib sinbs) exp i

{
a

b
tan−1

(
a tanbs√

1 − b2 tan2 bs

)}

×{z(t) + c1(b2 tan2 bs− i(sin−1(b tanbs) + b tanbs
√

1 − b2 tan2 bs))},
wherea = √

1 + b2, c1 is a light-like vector and z(t) is a unit speed special Legendre
curve inH5

1(−1) such thatc1 and z are related by

z′′(t) − if (t)z′(t) = 2b2c1, 〈c1, z〉 = − 1

2b2

for a non-zero function f(t).
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(41) Flat Lagrangian surfaces defined byπ ◦ L with

L = ei
√
s2−b2

(
1 − i

√
s2 − b2

√
1 − b2

,

(
b2s

b+ i
√
s2 − b2

)b
sz(t)

)
,

where z(t) is a Legendre curve with constant speedb−2b in S3((1 − b2)b4b) ⊂ C2.
(42) Flat Lagrangian surfaces defined byπ ◦ L with

L =
(
z(t) ei

√
1−b2s,

1

b

√
1 − b2 eis/

√
1−b2

)
,

whereb ∈ (0,1) and z(t) is a unit speed Legendre curve inH3
1(−b2) ⊂ C2.

(43) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L =
(
z(t) cosh(bs) exp

i

b

{
a sinh−1

{
a sinhbs√
a2 − c2

}

−c tanh−1

{
c sinhbs√

a2 cosh2 bs− c2

}}
,

√
2(ib sinbs+

√
a2 cosh2 bs− c2)√

b2 + c2(
√
a2 cosh2 bs− c2 − a sinhbs)ia/b

)
,

where z(t) is a unit speed Legendre curve inH3
1(−(b2 + c2)) ⊂ C2

1, a = √
1 − b2, b ∈

(0,1),and c is a positive number less than a.
(44) Lagrangian surfaces of negative curvature−b2 defined byπ ◦ L with

L = (z(t)(coshbs)1+i
√

1−b2/b, (sinhbs)1+i
√

1−b2/b), b ∈ (0,1),

where z(t) is a unit speed Legendre curve inH3
1(−1) ⊂ C2

1.
(45) Lagrangian surfaces of positive curvatureb2 defined byπ ◦ L with

L = (
√
a2 cos2 bs+ c2 + ia sinbs)a/b

(√
c2 + a2 cos2 bs− ib sinbs√
b2 + c2(a2 + c2)a/2b

,

z(t)(cosbs) exp i

{
c

b
tanh−1

(
c sinbs√

a2 cos2 bs+ c2
)})

,

where z(t) is a unit speed Legendre curve inS3((b2 + c2)(a2 + c2)a/b) ⊂ C2, b, c are
positive numbers, anda = √

1 + b2.
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(46) Flat Lagrangian surfaces defined byπ ◦ L with

L = ei
√
s2+b2

(1 − i
√
s2 + b2, z(t)s1+ib(b+

√
s2 + b2)−ib),

where z(t) is a unit speed Legendre curve inS3(1 + b2) ⊂ C2 and b is a positive
number.

(47) Flat Lagrangian surfaces defined byπ ◦ L with

L =
(
c eis/c

√
c2 − 1

, z(t) eics

)
,

where z is a unit speed Legendre curve inS3(c2 − 1) ⊂ C2 andc > 1.
(48) Lagrangian surfaces of negative curvature−b2, b > 1,defined byπ ◦ L with

L = (
√
c2 − a2 cosh2 bs− ia sinhbs)a/b

×
(√

c2 − a2 cosh2 bs+ ib sinhbs√
c2 − b2(c2 − a2)a/2b

,

z(t)( sechbs)c/b−1(
√
c2 − a2 cosh2 bs+ ic sinhbs)c/b)

)
,

wherez(t) is a Legendre curve with speed(c2 − a2)−(a+c)/2b in S3(k̂) ⊂ C2 with
k̂ = (c2 − b2)(c2 − a2)(a+c)/b anda = √

b2 − 1 and, c > b > 1.
(49) Lagrangian surfaces of negative curvature−b2, b ∈ (0,1),defined byπ ◦ L with

L =




√
c2 + a2 cosh2 bs exp[i{(a/b) coth−1((a sinhbs)/

√
c2 + a2 cosh2 bs)

+[(a2 + 2c2)/2b2(a2 + c2)] tan−1((b sinbs)/
√
c2 + a2 cosh2 bs)}]√

c2 − b2 exp[i{[a2(1 − 2a2 − 2c2)/2b2(a2 + c2)] cot−1((b sinbs)/√
c2 + a2 cosh2 bs)}]

,

z(t)(coshbs) exp
i

b

{
c tan−1

(
c sinhbs√

c2 + a2 cosh2 bs

)

+ a tanh−1

(
a sinhbs√

c2 + a2 cosh2 bs

)}

 ,

where z is a unit speed Legendre curve inS3(c2 − b2) ⊂ C2, a = √
1 − b2 and

c > b.
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(50) Lagrangian surfaces of negative curvature−b2,1> b > c > 0,defined byπ ◦ Lwith

L =


z(t)(coshbs) exp

i

b

{
c tan−1

(
c sinhbs√

c2 + a2 cosh2 bs

)

+ a tanh−1

(
a sinhbs√

c2 + a2 cosh2 bs

)}
,

√
c2 + a2 cosh2 bs exp[i{(a/b) coth−1((a sinhbs)/

√
c2 + a2 cosh2 bs)

+[(a2 + 2c2)/2b2(a2 + c2)] tan−1((b sinbs)/
√
c2 + a2 cosh2 bs)}]√

c2 − b2 exp[i{[a2(1 − 2a2 − 2c2)/2b2(a2 + c2)]

cot−1((b sinbs)/
√
c2 + a2 cosh2 bs)}]


 ,

where z(t) is a unit speed Legendre curve inH3
1(c2 − b2) ⊂ C2 anda = √

1 − b2.
(51) Lagrangian surfaces of curvature−1 defined byπ ◦ L with

L = cschbs√
1 + 4b2

(√
(1 + 4b2) cosh2 bs− 1

exp(i tan−1(2b coth bs))
,

2b eis/2 cos(12
√

1 + 4b2t),2b eis/2 sin(1
2

√
1 + 4b2t)

)
,

where b is an arbitrary positive number.
(52) Lagrangian surfaces

(
Eρψ, ερψ

)
of curvature−1 described inProposition 5.1.

(53) Lagrangian surfaces
(
FKµΦ, f

K
µΦ

)
of constant curvature K described in

Proposition 5.2.

(54) Lagrangian surfaces
(
GKµΦ, g

K
µΦ

)
of constant curvature K described in

Proposition 5.3.

(55) Lagrangian surfaces
(
HKµΦ, h

K
µΦ

)
of constant curvature K described in

Proposition 5.4.
(56) Flat Lagrangian surfaces defined byπ ◦ L with

L = ei
√
s2−b2

(
z(t)(b− i

√
s2 − b2)b

sb−1 ,
1 − i

√
s2 − b2

√
b2 − 1

)
,

whereb > 1 andz(t) is a space-like unit speed Legendre curve inH3
1(1 − b2) ⊂ C2

1.
(57) Flat Lagrangian surfaces defined byπ ◦ L with

L = (1 − i
√
s2 − 1)ei

√
s2−1(z(t) + c1s−2(1 + i

√
s2 − 1 − is2 tan

√
s2 − 1)),



414 B.-Y. Chen / Journal of Geometry and Physics 55 (2005) 399–439

wherec1 is a light-like vector andz(t) is a space-like unit speed curve in the light cone
LC,andc1, z are related by〈c1, z〉 = −1/2,〈c1, iz〉 = 0andz′′(t) − if (t)z′(t) = 2ic1
for some real-valued functionf (t).

(58) Flat Lagrangian surfaces defined byπ ◦ L with

L =
(
z(t)eibs,

beis/b
√

1 − b2

)
,

wherez is a space-like unit speed Legendre curve inH3
1(b2 − 1) ⊂ C2

1 andb ∈ (0,1).
(59) Flat Lagrangian surfaces defined byπ ◦ L with

L = c1seis + z(t)eis,

wherez(t) is a space-like unit speed Legendre curve inH3
1(−1) ⊂ C2

1, c1 is a light-like
vector, andc1 andz are related by

z′′(t) − if (t)z′(t) = ic1, 〈c1, z〉 = 0, 〈c1, iz〉 = 1.

(60) Lagrangian surface of curvatureK = −b2 < −1,defined byπ ◦ L with

L = (
√
c2 − a2 cosh2bs− ia sinhbs)a/b

×
(

z(t)(coshbs)1−c/b

(
√
c2 − a2 cosh2bs+ic sinhbs)−c/b

,

√
c2−a2 cosh2bs+ib sinhbs√
b2 − c2(c2 − a2)a/2b

)
,

where a = √
b2 − 1 and z(t) is a space-like Legendre curve with speed(c2 −

a2)−(a+c)/2b in H3
1(k̂) ⊂ C2 with k̂ = (c2 − b2)(c2 − a2)(a+c)/b andb > c > 0.

(61) Lagrangian surface of curvatureK = −b2 < −1,defined byπ ◦ L with

L = (
√

cosh2bs− b2 sinh2bs+ ib sinbs)

eiab−1tan−1(a tanhbs/
√

1−b2 tanh2bs)

× {z(t) + c1(b tanhbs
√

1 − b2 tanh2bs+sin−1(b tanhbs) − ib2 tanh2bs)},
wherea = √

b2 − 1, c1 is a light-like vector, z(t) is a space-like unit speed Legendre
curve inH3

1(−1) such thatc1 andz(t) are related by

z′′(t) − if (t)z′(t) = 2ib2c1, 〈iz, c1〉 = 1

2b2 , 〈z, c1〉 = 0.

Proof. Let M be a Lagrangian surface of constant curvatureK in CH2(−4). Denote the
tangent bundle ofM by TM. If M is minimal inCH2(−4), then it is totally geodesic (cf.
[9,11]). SoM is an open portion of a Lagrangian totally geodesic real hyperbolic plane
H2(−1) inCH2(−4). This gives case (1).



B.-Y. Chen / Journal of Geometry and Physics 55 (2005) 399–439 415

Now, let us assume thatM is non-minimal. ThenU := {p ∈ M : H(p) �= 0} is a non-
empty open subset. We shall work onU instead ofM. As in [4] we know that, for each point
p in U, there exists an orthonormal basis{e1, e2} of TpM such that

h(e1, e1) = λJe1, h(e1, e2) = µJe2, h(e2, e2) = µJe1 + ϕJe2 (4.1)

for some functionsλ,µ, ϕ. BecauseH �= 0, we have (λ+ µ)2 + ϕ2 > 0 onU.
If ϕ = 0 onU, then the Lagrangian surface is Maslovian. Thus, it follows from Theorem

3 of [3] that we have cases (2)–(30).
Next, let us assume thatϕ �= 0 on an open subsetV ⊂ U. In this case,(4.1) and the

equation of Codazzi imply that

e1µ = ϕω2
1(e1) + (λ− 2µ)ω2

1(e2), e2λ = (λ− 2µ)ω2
1(e1),

e2µ− e1ϕ = 3µω2
1(e1) + ϕω2

1(e2), (4.2)

where∇Xe1 = ω2
1(X)e2. Also from(4.1)and the equation of Gauss we have

K = λµ− µ2 − 1 = const. (4.3)

Case (I).∇e1e1 = 0 on an open neighborhoodV1 of a point in V. In this case,(4.2)
reduces to

e1µ = (λ− 2µ)ω2
1(e2), e2λ = 0, e2µ− e1ϕ = ϕω2

1(e2) (4.4)

on V1. By differentiating(4.3) with respect toe2 and by applying(4.4), we obtain (λ−
2µ)e2µ = 0. Thus, we have eitherλ = 2µ or e2µ = 0 at each point ofV1.

If λ = 2µ on some connected open subsetW ⊂ V1, thenK = µ2 − 1 on W which
implies thatµ is constant onW. So, e2µ = 0 also holds onW. Consequently, we have
e2µ = 0 identically onV1 on both cases. Therefore,(4.4)yields

e1µ = (λ− 2µ)ω2
1(e2), e2λ = e2µ = 0, e1ϕ = −ϕω2

1(e2). (4.5)

Because we have∇e1e1 = 0 onV1, there exists a local coordinate system{s, u} onV1 such
that the metric tensor is given by

g = ds⊗ ds+G2(s, u) du⊗ du (4.6)

for some functionG with ∂/∂s = e1, ∂/∂u = Ge2. From(4.5) we haveλ = λ(s) andµ =
µ(s). Also, it follows from(4.6) that:

∇∂/∂u ∂
∂s

= (ln G)s
∂

∂u
, ω2

1(e2) = Gs

G
. (4.7)

By (4.5)–(4.7), we find (lnG)s = −(ln ϕ)s. Thus(4.6)becomes

g = ds⊗ ds+ F2(u)

ϕ2 du⊗ du, e1 = ∂

∂s
, e2 = ϕ

F (u)

∂

∂u
(4.8)
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for some positive functionF(u). By applying(4.8) and the equation of Gauss, we have
ϕϕss − 2ϕ2

s = Kϕ2. After solving this differential equation, we obtain

ϕ =




A(u) sec(bs+ B(u)) if K = b2 > 0,

A(u)

s+ B(u)
or b if K = 0,

A(u)sech(bs+ B(u)) if K = −b2 < 0

(4.9)

for some functionsA(u), B(u) andR � b �= 0, whereA is nowhere zero onV1.
Let t = t(u) be an antiderivative ofF (u)/A(u). Consider

g =




ds⊗ ds+ cos2(bs+ θ(t)) dt ⊗ dt if K = b2 > 0,

ds⊗ ds+ (s+ θ(t))2 dt ⊗ dt or ds⊗ ds+ dt ⊗ dt if K = 0,

ds⊗ ds+ cosh2(bs+ θ(t)) dt ⊗ dt if K = −b2 < 0,

(4.10)

for some functionθ(t).
We divide case (I) into several cases.
Case (I.i).λ = 2µ on an open subsetU1 ⊂ V1. In this case, bothλ, µ are constant and

K = µ2 − 1 ≥ −1 onU1 by (4.3).
If λ = µ = 0 onU1, the Lagrangian surface is Maslovian. So, this reduces to previous

case. Hence we may assume thatλ = 2µ = 2c for some positive numberc onU1 which
givesK = c2 − 1> −1.
Case (I.i.a).K = c2 − 1 = b2 > 0 onU1. Without loss of generality, we may assume

b > 0. From(4.9) and (4.10)we have

g = ds⊗ ds+ cos2(bs+ θ(t)) dt ⊗ dt, λ = 2µ = 2c > 0,

ϕ = f (t) sec(bs+ θ(t)), (4.11)

wheref is non-zero function. From(4.1), (4.11)and formula of Gauss, we find

Lss = 2icLs + L, Lst = (ic − b tan(bs+ θ))Lt, c =
√

1 + b2,

Ltt = (ic cos(bs+ θ(t)) + b sin(bs+ θ(t))) cos(bs+ θ(t))Ls
+ (if (t) − θ′ tan(bs+ θ))Lt + cos2(bs+ θ(t))L. (4.12)

After solving the first equation of this system, we obtain

L = ei(c−b)s(A(t) + B(t) e2ibs), c =
√

1 + b2 (4.13)

for someC3
1-valued functionsA(t), B(t). By substituting this into the second equation of

(4.12), we discover thatB′(t) = A′(t) e2iθ(t). Hence,(4.13)becomes

Lt = A′(t) ei(c−b)s(1 + e2i(bs+θ)). (4.14)

If θ is constant, sayθ0, onU1, then(4.14)becomesLt = A′(t) ei(c−b)s(1 + r e2ics) with
r = e2iθ0 which implies that

L = A(t) ei(c−b)s(1 + r e2ics) +K(s) (4.15)
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for someC3
1-valued functionK(s). Substituting(4.15)into the first equation in(4.12)yields

K′′ = 2icK′ +K. Hence, after solving the last equation, we obtainK(s) = ei(c−b)s(a1 +
a2 e2ibs) for some vectorsa1, a2 ∈ C3

1. Therefore, we may put

L = F (t)(ei(c−b)s + r ei(c+b)s) + c1 ei(c+b)s

for some vector functionF(t) and vectorc1. Substituting this into the last equation in
(4.12)gives 2F ′′(t) − 2if (t)F ′(t) + 2b2F (t) + b(b+ c)c1 e−2iθ0 = 0. Thus we getF (t) =
z(t) − ((b+ c)/2b)c1 e−2iθ0, wherez = z(t) is aC3

1-valued solution of

z′′(t) − if (t)z′(t) + b2z(t) = 0. (4.16)

Consequently, we obtain

L = z(t)(ei(c−b)s + r ei(c+b)s) − c1
(
b+ c
2br

ei(c−b)s + c − b
2b

ei(c+b)s
)
, (4.17)

wherer = e2iθ0. From(4.17)we get

L(0, t) = (1 + e2iθ0)z(t) − 1

2b
{c − b+ (c + b) e−2iθ0}c1,

Ls(0, t) = i

{
{c − b+ (c + b) e2iθ0}z(t) − (1 + e−2iθ0)

2b
c1

}
,

Lt(0, t) = (1 + e2iθ0)z′(t). (4.18)

Thus, by applying〈L,L〉 = −1, the first equation in(4.11), and (4.18), we obtain

|z′(t)| = 1

2
, |z(t)|2 = 1

4b2 , 〈c1, c1〉 = −1, 〈z(t), c1〉 = 〈z(t), ic1〉 = 0.

(4.19)

It follows from (4.16), (4.20)andLemma 3.2that c1 is time-like andz(t) is a Legendre
curve with speed 1/2 inS3(4b2) ⊂ C2, whereC2 is a space-like plane inC3

1 perpendicular
to c1. So, if we choosec1 = (−1,0,0), we obtain from(4.17)that

L =
(
b+ c

2b
ei(c−b)s−2iθ0 + c − b

2b
ei(c+b)s, (ei(c−b)s + ei(c+b)s+2iθ0)z(t)

)
, (4.20)

wherez(t) is a is a Legendre curve of constant speed 1/2 inS3(4b2). Consequently, restricted
toU1, the Lagrangian surface is congruent case (31).

Next, let us assume thatθ(t) is a non-constant function on an open intervalI containing
0. From(4.14)we find

L = ei(c−b)sA(t) + ei(b+c)s
∫ t

0
A′(t) e2iθ dt +K(s), c =

√
1 + b2 (4.21)

for someC3
1-valued functionK. Substituting this into the first equation in(4.12) gives

K′′ = 2icK′ +K. Solving this equation givesK = a1 ei(c−b)s + a2 ei(c+b)s for some vectors
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a1, a2 ∈ C3
1. Hence, we obtain

L = ei(c−b)sz(t) + ei(c+b)sw(t), (4.22)

where z(t) = A(t) + a1 andw(t) = ∫ t0 z′(t) e2iθ dt + a2. Since 〈L,L〉 = −1, (4.22) im-
plies that〈z(t), z(t)〉 + 〈w(t), w(t)〉 + 2〈ze2ics, w〉 = −1. Hence, by applying〈z,e2icsw〉 =
cos(2cs)〈z,w〉 + sin(2cs)〈z, iw〉, we find

〈z,w〉 = 〈z, iw〉 = 0, 〈z(t), z(t)〉 + 〈w(t), w(t)〉 = −1.

Also, from(4.22), we have

Ls = i(c − b) ei(c−b)sz(t) + i(c + b) ei(c+b)sw(t),

Lt = z′(t) ei(c−b)s(1 + e2i(bs+θ(t))). (4.23)

Applying these yields

|z′(t)| = |w′(t)| = 1

2
, 〈z(t), z(t)〉 = −c + b

2b
, 〈w(t), w(t)〉 = c − b

2b
.

So, after differentiating the last equation, we have〈z′ e2iθ, w〉 = 0. Moreover, by applying
〈L,Lt〉 = 〈Ls, iLt〉 = 0, we get

〈z,e2i(bs+θ)z′〉 + 〈z′,e2ibsw〉 = (c − b)〈z,e2i(bs+θ)z′〉 + (c + b)〈z′,e2ibsw〉 = 0,

which implies that〈z,e2i(bs+θ)z′〉 = 〈z′,e2ibsw〉 = 0. Thus, we find

〈z, iz′〉 = 〈z′, w〉 = 〈z′, iw〉 = 〈w′, iw〉 = 0.

Hence,z : I → H5
1(−2b/(b+ c)) ⊂ C3

1 andw : I → S5(2b/(c − b)) ⊂ C3
1 are space-like

Legendre curves of constant speed 1/2.
Now, by substituting(4.22)into the last equation in(4.13), we find

z′′(t) = i(f (t) − θ′(t))z′(t) + b(c − b)
2

z(t) − b(b+ c)
2

e−2iθw(t). (4.24)

Sincew′(t) = e2iθz′(t), w = w(t) is a parallel normal vector field. Consequently,z : I →
H5

1(−2b/(b+ c)) ⊂ C3
1 is a space-like special Legendre curve of constant speed 1/2 and

w : I → S5(2b/(c − b)) ⊂ C3
1 is an associated special Legendre curve ofzwith the same

speed. Thus, the Lagrangian surface is congruent to case (32).
Case (I.i.b).K = c2 − 1 = 0 on U1. Without loss of generality, we may assume that

c = 1.
Case (I.i.b.1).g = ds2 + (s+ θ(t))2 dt2 onU1. From(4.9) and (4.10)we get

g = ds⊗ ds+ (s+ θ(t))2 dt ⊗ dt, λ = 2µ = 2, ϕ = f (t)

s+ θ(t) , (4.25)



B.-Y. Chen / Journal of Geometry and Physics 55 (2005) 399–439 419

wheref is non-zero function. Applying(4.1), (4.25)and Gauss’ formula, we find

Lss = 2iLs + L, Lst =
(

i + 1

s+ θ(t)
)
Lt,

Ltt =
(

i(s+ θ(t))2 + θ′(t)
s+ θ(t) − s− θ(t)

)
Ls +

(
if (t) + θ′(t)

s+ θ(t)
)
Lt

+(s+ θ(t))2L. (4.26)

A straight-forward computation shows that the compatibility condition of system(4.26)
impliesθ is constant. Thus, after a suitable translation,(4.26)reduces to

Lss = 2iLs + L, Lst = (i + s−1)Lt, Ltt = (is2 − s)Ls + if (t)Lt + s2L.
(4.27)

After solving the first two equations of this system, we obtain

L = eis(c1 + sB(t)) (4.28)

for some vector functionB(t) and vectorc1. So, from the third equation we getB′′(t) −
if (t)B′(t) + B(t) + ic1 = 0. Hence, if we putz(t) = B(t) + ic1, we get

L = eis((1 − is)c1 + sz(t)), z′′(t) − if (t)z′(t) + z(t) = 0. (4.29)

From(4.29), we get

Ls = eis(sc1 + (1 + is)z(t)), Lt = s eisz′(t). (4.30)

It follows fromg = ds2 + s2 dt2, (4.29), (4.30), and〈Ls, iLt〉 = 0 thatc1 is a unit time-like
vector perpendicular tozand izandz(t) is a unit speed curve lying inS3(1). Hence, by(4.29),
z is Legendre inS3(1). Hence, by choosingc1 = (1,0,0) we conclude that the Lagrangian
surface, restricted toU1, is congruent to case (33).
Case (I.i.b.2).g = ds2 + dt2 onU1. We obtain from(4.9) and (4.10)that

g = ds⊗ ds+ (s+ θ(t))2 dt ⊗ dt, λ = 2µ = 2, ϕ = b �= 0. (4.31)

Applying (4.1), (4.31)and the formula of Gauss, we find

Lss = 2iLs + L, Lst = iLt, Ltt = iLs + ibLt + L. (4.32)

After solving this system we obtain

L = eis(sc1 + z(t)), z′′(t) − ibz′(t) = ic1. (4.33)

Solving the last differential equation givesz(t) = c2 eibt − c1(t/b) + c3 for some vectors
c1, c2, c3. Hence, we get from(4.27)that

L = eis((s− b−1t)c1 + c2 eibt + c3), (4.34)

which implies

Ls = eis((1 + is− ib−1)c1 + ic2 eibt + ic3), Lt = eis(ibc2 eibt − b−1c1). (4.35)
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By applying the first equation in(4.31), (4.34), (4.35)and〈L,L〉 = −1, we find

〈c1, c1〉 = 0, 〈c2, c2〉 = 1

b2 , 〈c3, c3〉 = −1 − 1

b2 , 〈c1, ic3〉 = 1.

(4.36)

Hence, after choosing

c1 =
(

b√
1 + b2

,
b√

1 + b2
,0

)
, c2 =

(
0,0,

1

b

)
, c3 =

(
i

√
1 + b2

b
,0,0

)
,

we conclude that, restricted toU1, the Lagrangian surface is congruent to case (34).
Case (I.i.c).K = c2 − 1 = −b2 < 0 onU1. Follows from(4.9) and (4.10)that:

g = ds⊗ ds+ cosh2(bs+ θ(t)) dt ⊗ dt, c =
√

1 − b2, λ = 2µ = 2c > 0,

ϕ = f (t) sech (bs+ θ(t)), (4.37)

wheref is non-zero function. Hence we obtain

Lss = 2icLs + L, Lst = (ic + b tanh(bs+ θ))Lt,
Ltt = (ic cosh(bs+ θ(t)) − b sinh(bs+ θ(t))) cosh(bs+ θ(t))Ls + (if (t)

+ θ′ tanh(bs+ θ))Lt + cosh2(bs+ θ(t))L. (4.38)

After solving the second equation of(4.38)for Lt , we obtain

Lt = eicsq(t) cosh(bs+ θ(t)). (4.39)

On the other hand, by solving the first equation of this system, we obtain

L = eics(ebsB(t) + e−bsA(t)), c =
√

1 − b2 (4.40)

for someC3
1-valued functionsA(t), B(t). Thus, by comparing(4.39) and (4.40), we find

ebsB′(t) + e−bsA′(t) = q(t) cosh(bs+ θ(t)), which is nothing but

2 ebsB′(t) + 2 e−bsA′(t) = q(t)(ebs eθ(t) + e−bs e−θ(t)). (4.41)

Thus 2B′(t) = q(t) eθ(t) and 2A′(t) = q(t) e−θ(t), which implyB′(t) = e2θ(t)A′(t). Therefore,
we haveB(t) = ∫ t

t0
e2θ(t)A′(t) dt for some vectorc0. Substituting this into(4.40)yields

L = e(ic+b)s(H(t) + e−2bsA(t)t), H(t) =
∫ t

t0

e2θ(t)A′(t) dt. (4.42)

Substituting(4.42)into the last equation in(4.38)yields

A′′(t) + (θ′(t) − if (t))A′(t) − b

2
(b− ic)A(t) − b

2
(b+ ic) e−2θ(t)H(t) = 0. (4.43)
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If θ is constant, sayθ0, onU1, thenH(t) = r(z(t) − A′(0)) with r = e2θ0. Thus,(4.43)
reduces to

A′′(t) − if (t)A′(t) − b2A(t) − b

2r
(b+ ic)c1 = 0 (4.44)

for a vectorc1. So, if we putz(t) = A(t) + (ic + b)c1/(2br), (4.42) and (4.44)become

L = e(b+ic)s
{

(e2θ0 + e−2bs)z(t) + 1

2b
(b− ic − (b+ ic) e−2(bs+θ0))c1

}
, (4.45)

z′′(t) − if (t)z′(t) − b2z(t) = 0. (4.46)

From(4.45)we find

Ls = e(ic−b)s

2b
{2b(ic − b+ (b+ ic) e2bs+2θ0)z(t) + (e2bs + e−2θ0)c1},

Lt = e(b+ic)s(e2θ0 + e−2bs)z′(t). (4.47)

By applying〈L,L〉 = −1, (4.45), (4.39) and (4.47), we obtain

〈z, z〉 = −e−2θ0

4b2 , 〈z′, z′〉 = e−2θ0

4
, 〈c1, c1〉 = e2θ0,

〈z, c1〉 = 〈z, ic1〉 = 〈iz, z′〉 = 0.

Hence,z(t) is a space-like Legendre curve inH3
1(−4b2 e2θ0) with speed e−θ0/2 andc1 is

a space-like vector perpendicular toz, iz. Therefore, after we choosec1 = (0,0,eθ0), we
obtain case (35).

Next, assumeθ(t) is non-constant. Let us puty = (1/2)
∫ t
t0

e−θ(t) dt, z(y) = A(t(y)) and
w(y) = H(t(y)). Then(4.42) and (4.39)become

L(s, y) = e(ic+b)s(e−2bsz(y) + w(y)) (4.48)

z′′(y) − if̃ (y)z′(y) − 2b(b− ic) e2θz(y) − 2b(b+ ic)w(y) = 0, (4.49)

wheref̃ (y) = 2f (t(y)) eθ(t(y)) andw′(y) = e2θz′(y). From(4.48)we have

Ls=e(ic−b)s{[(ic − b)z(y) + (ic + b) e2bsw(y)}, Ly=e(ic+b)s(e−2bs + e2θ)z′(y).

(4.50)

Applying 〈Ly,Ly〉 = 4 e2θ cosh2(bs+ θ), (4.37), (4.48) and (4.50), we find

〈z, z〉 = 〈w,w〉 = 0, 〈z′, z′〉 = 1,2〈z,w〉 = −1, 〈iz,w〉 = c

2b
, (4.51)

Thus, by(4.51)and the definition ofw, we have〈w′, w′〉 = e2θ.
Since 〈Ls, iLy〉 = 0, (4.50) and 〈z, z〉 = 0 imply that 〈iz, z′〉 = 0 and c〈iw, z′〉 =

−b〈w, z′〉. Also, by differentiating the last equation in(4.51), we have〈iz′, w〉 = 0, which
gives 〈iw′, w〉 = 0. Also, by combining〈iz′, w〉 = 0 with c〈iw, z′〉 = −b〈w, z′〉, we get
〈w, z′〉 = 0. Therefore,z(y) andw(y) are space-like Legendre curve lying the light cone
with speed one and eθ, respectively. Consequently, the Lagrangian surface is congruent to
case (36).
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Case (I.ii).λ �= 2µ on an open subsetU2 ⊂ V1. In this case,(4.2), (4.3)and∇e1e1 = 0
imply e2λ = e2µ = 0. Thus we obtain from(4.4) that

ω2
1(e2) = µ′(s)

λ− 2µ
. (4.52)

If µ = 0 on an open subsetVof U2, then(4.3) and (4.52)implyK = −1 andω2
1 = 0 on

Vwhich is impossible. So,µ is non-zero almost everywhere onU2.
Case (I.ii.a).λ = µ �= 0 onU2. From(4.3) and (4.4)we get

K = −1, e1(ln µ) = −ω2
1(e2), e2λ = e2µ = 0, e1ϕ = −ϕω2

1(e2).

(4.53)

So,λ andµ depend only onsaccording to(4.8). Combining(4.7)and the second equation
in (4.53)givesG = F (u)/µ(s). Hence(4.6)reduces to

g = ds⊗ ds+ dt ⊗ dt

µ2(s)
, (4.54)

wheret = t(u) is an antiderivative ofF(u). Thus,(4.10)yieldsµ = sech (s+ b). Hence,
after making a suitable translation ins, we obtain

g = ds⊗ ds+ cosh2 s dt ⊗ dt, λ = µ = sechs. (4.55)

From (4.55) we findω2
1(e2) = tanhs. Thus, we may obtain from the last equation in

(4.53)thatϕs = ϕ tanhs which givesϕ = f (t) sechs for some functionf. Without loss of
generality, we may assume that 0 is the domain off.

From(4.1), (4.55)and the formula of Gauss, we obtain

Lss = i sechsLs + L, Lst = (i sechs+ tanhs)Lt,

Ltt = (i − sinhs) coshsLs + if (t)Lt + cosh2 sL. (4.56)

Solving the first two equations in(4.56)gives

L = c1
(

i + 2(1+ i sinhs) tan−1
(

tanh
( s

2

)))
+ (1 + i sinhs)z(t) (4.57)

for someC3
1-valued functionz(t) and vectorc1 ∈ R3

1. Substituting this into the last equation
of (4.56)yields

z′′(t) − if (t)z′(t) − 2ic1 = 0. (4.58)

From(4.57)we have

Ls = c1

{
1 + 2i

coth
(
s
2

)− i
+ 2i tan−1

(
tanh

( s
2

))
coshs

}
+ i(coshs)z(t),

Lt = (1 + i sinhs)z′(t). (4.59)

From these we find

〈z, z〉 = 〈c1, c1〉 = 〈c1, z〉 = 〈iz, z′〉 = 0, 〈z′, z′〉 = 1, 〈c1, iz〉 = 1
2.

Thus,c1 is a light-like vector andz(t) is a unit speed space-like Legendre curve lying in the
light cone. Hence, we obtain case (37).
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Case (I.ii.b). λ �= µ. If µ = 0, then(4.2) andω2
1(e1) = 0 imply ω2

1(e2) = 0. Hence,
ω2

1 = 0 which yieldsK = 0. On the other hand, fromµ = 0 and(4.3), we haveK = −1
which is impossible. Thus, we getµ �= 0 on an open subsetW1 ⊂ U2 and alsoK �= −1 by
(4.3). Moreover, from(4.3), (4.5) and (4.7), we have

0 �= λ− 2µ = K − µ2 + 1

µ
,

ω1
2(e2) = e1(ln

√
|K − µ2 + 1|) = e1 (ln ϕ) = −e1(ln G) (4.60)

onW1, whereG is defined by(4.6). After solving(4.60)we have

G
√

|K − µ2 + 1| = p(t), ϕG = f (t) (4.61)

for some positive real-valued functionp and non-zero real-valued functionf.
Case (I.ii.b.1).K = b2 > µ2 − 1 on a neighborhoodW1,1 of a pointp ∈ W1. Without

loss of generality, we may chooseb > 0. From(4.10) and (4.61)we get

g = ds⊗ ds+ cos2(bs+ θ(t)) dt ⊗ dt, a =
√

1 + b2,

µ2 = a2 − p2(t) sec2(bs+ θ(t)), λ = a2 + µ2

µ
, ϕ = f (t) sec(bs+ θ(t)).

(4.62)

From (4.5) we haveµ = µ(s). Differentiating the second equation in(4.62) gives
(ln p(t))′ = ∂(ln cos(bs+ θ(t)))/∂t. Hence,p(t) = k(s) cos(bs+ θ(t)) for some function
k(s). Now, by differentiating the last equation with respect tos, we find (ln k(s))′ =
b tan(bs+ θ(t)). Therefore,θ andp are constant. So, by applying a suitable translation
in s, we haveθ = 0. Hence, we obtain from(4.62)that

g = ds⊗ ds+ (cos2 bs) dt ⊗ dt, (4.63)

λ = 2a2 − c2 sec2 bs√
a2 − c2 sec2 bs

, µ =
√
a2 − c2 sec2 bs, ϕ = f (t) secbs, (4.64)

wherec = p is a positive number. It follows from(4.62)thata2 > c2.
From(4.1), (4.63), (4.64)and the formula of Gauss we obtain

Lss = i
2a2 − c2 sec2 bs√
a2 − c2 sec2 bs

Ls + L, Lst = (i
√
a2 − c2 sec2 bs− b tanbs)Lt,

Ltt = (b sinbs+ i
√
a2 cos2 bs− c2) cosbsLs + if (t)Lt + cos2 bsL. (4.65)

Case (I.ii.b.1.α). b2 �= c2. Solving the first two equations in(4.65)gives

L = z(t)(cosbs) exp i

{
a

b
sin−1

(
a sinbs√
a2 − c2

)
− c

b
tan−1

(
c tanbs√

a2 − c2 sec2 bs

)}

+c1(
√
a2 cos2 bs− c2 − ib sinbs)(

√
a2 cos2 bs− c2 + ia sinbs)a/b (4.66)
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for someC3-valued functionsz(t) and constant vectorc1. Thus, by substituting(4.66)into
the last equation of(4.65)we get

z′′(t) − if (t)z′(t) + (b2 − c2)z(t) = 0. (4.67)

By applying〈L,L〉 = −1, 〈Ls, iLt〉 = 0, (4.63) and (4.66), we find

〈z, z〉 = 1

b2 − c2 , 〈c1, c1〉 = 1

(c2 − b2)(a2 − c2)a/b
,

〈z, c1〉 = 〈z, ic1〉 = 〈iz, z′〉 = 0, 〈z′, z′〉 = 1. (4.68)

If b2 > c2, then(4.67) implies thatc1 is a time-like vector andz(t) is a unit speed space-
like Legendre curve inS3(b2 − c2) ⊂ C2, whereC2 is perpendicular toc1, ic1. Hence, the
Lagrangian surface restricted toW1,1 is congruent to case (38).

If b2 < c2, thenc1 is a space-like vector andz(t) is a unit speed space-like Legendre
curve inH3

1(b2 − c2) ⊂ C2
1, whereC2

1 is perpendicular toc1, ic1. So, the Lagrangian surface
restricted toW1,1 is congruent to case (39).
Case (I.ii.b.1.β). b2 = c2. We may assumec = b. So,(4.65)reduces to

Lss = i
2 + b2 − b2 tan2 bs√

1 − b2 tan2 bs
Ls + L, Lst = (i

√
1 − b2 tan2 bs− b tanbs)Lt,

Ltt =
(
b

2
sin 2bs+ i

√
1 − b2 tan2 bs cos2 bs

)
Ls + if (t)Lt + cos2 bsL. (4.69)

After solving the first two equations in(4.68)we obtain

L = (cosbs
√

1 − b2 tan2 bs− ib sinbs) exp i

{
a

b
tan−1

(
a tanbs√

1 − b2 tan2 bs

)}
{z(t)

+c1(b2 tan2 bs− i(sin−1(b tanbs) + b tanbs
√

1 − b2 tan2 bs))} (4.70)

for someC3-valued functionsz(t) and constant vectorc1. Also, by substituting(4.70)into
the last equation of(4.69)we get

z′′(t) − if (t)z′(t) = 2b2c1. (4.71)

Since〈L,L〉 = −1, 〈Ls, iLt〉 = 0, (4.63) and (4.70)imply that

〈z′, z′〉 = −〈z, z〉 = 1, 〈c1, c1〉 = 〈z, ic1〉 = 〈iz, z′〉 = 0, 〈c1, z〉 = − 1

2b2 .

(4.72)

Hence, c1 is a light-like vector andz(t) is a unit speed special Legendre curve in
H5

1(−1).Therefore, the Lagrangian surface is congruent to case (40).
Case (I.ii.b.2).K = 0 andµ2 < 1 on a neighborhoodW1,1 of a pointp ∈ W1. Without

loss of generality, we may chooseb > 0. From(4.10) and (4.61)we get

g = ds⊗ ds+ (s+ θ(t))2 dt ⊗ dt, (respectively, g = ds⊗ ds+ dt ⊗ dt),

µ2 = 1 − p2(t)

(s+ θ(t))2 (respectively, µ2 = 1 − p2(t)),

ϕ = f (t)

s+ θ(t) (respectively, ϕ = f (t).) (4.73)
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Sinceµ = µ(s) depends only ons, p(t) andθ(t) both are constant. So, we haveθ = 0 after
applying a suitable translation ins. Hence, we obtain from(4.73)that

g = ds⊗ ds+ s2 dt ⊗ dt (respectively, g = ds⊗ ds+ dt ⊗ dt),

µ2 = 1 − s−2b2 (respectively, µ2 = 1 − b2), λ = µ+ µ−1,

ϕ = s−1f (t) (respectively, ϕ = f (t)) (4.74)

for some constantsb, c.
Case (I.ii.b.2.α). g = ds⊗ ds+ (s+ θ(t))2 dt ⊗ dt. We may assume that

µ =
√
s2 − b2

s
, λ = 2s2 − b2

s
√
s2 − b2

, ϕ = f (t)

s
. (4.75)

Thus we have

Lss = 2s2 − b2

s
√
s2 − b2

iLs + L, Lst = 1

s
(i
√
s2 − b2 + 1)Lt,

Ltt = (is
√
s2 − b2 − s)Ls + if (t)Lt + s2L. (4.76)

Solving the first two equations in(4.76)gives

L = ei
√
s2−b2

{
z(t)s

(
b2s

b+ i
√
s2 − b2

)b
+ c1(1 − i

√
s2 − b2)

}
(4.77)

for some constant vectorc1 and vector functionz(t). Substituting(4.77)into the last equation
in (4.73)yieldsz′′(t) − if (t)z′(t) + (1 − b2)z(t) = 0.

If b2 �= 1, then by applying(4.77)and〈L,L〉 = −1, we find

〈c1, c1〉 = − 1

1 − b2 , 〈z, z〉 = 1

(1 − b2)b4b , 〈z′, z′〉 = 1

b4b ,

〈c1, z〉 = 〈c1, iz〉 = 〈iz, z′〉 = 0. (4.78)

Hence, the surface restricted toW1,1 is congruent to case (41) or case (56). Ifb2 = 1,
then (4.76) gives case (57).
Case (I.ii.b.2.β). g = ds⊗ ds+ dt ⊗ dt. We may assume thatµ = k, λ = (2 −

b2)/k, ϕ = f (t), k = √
1 − b2, for some non-zero functionf(t). Thus, we have

Lss = i(k + k−1)Ls + L, Lst = ikLt, Ltt = ikLs + if (t)Lt + L. (4.79)

Solving the first two equations in(4.79)gives

L = c1 eis/
√

1−b2 + z(t) ei
√

1−b2s (4.80)

for some constant vectorc1 and vector functionz(t). Substituting(4.80)into the last equation
in (4.79)yieldsz′′(t) − if (t)z′(t) − b2z(t) = 0.

By applying(4.80)and〈L,L〉 = −1, we find

〈c1, c1〉 = b−2 − 1, 〈z, z〉 = −b−2, 〈c1, z〉 = 〈c1, iz〉 = 〈iz, z′〉 = 0,

〈z′, z′〉 = 1.
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Therefore,c1 is a space-like vector andz(t) is a unit speed Legendre curve inH3
1(−b2) ⊂ C2.

Thus the Lagrangian surface is congruent to case (42).
Case (I.ii.b.3).K = −b2 > µ2 − 1. We obtain from(4.10) and (4.61)that

g = ds⊗ ds+ cosh2(bs+ θ(t)) dt ⊗ dt, a =
√

1 − b2,

µ2 = a2 − p2(t) sech2(bs+ θ(t)), λ = µ−1a2 + µ,
ϕ = f (t) sech (bs+ θ(t)), (4.81)

wheref is non-zero function. Sinceµ = µ(s), the same reason as given in case (I.ii.b.1)
shows thatp(t) andθ(t) are constant, sayp = candθ = θ0. By applying a suitable translation
in s, we may assume thatθ0 = 0. It follows fromλ �= 2µ for case (I.ii) thatc �= 0. Moreover,
fromµ �= 0, we also haveb2 < 1 anda > 0.
Case (I.ii.b.3.α). a2 �= c2. We may assume thatµ =

√
a2 − c2 sech2(bs) and λ =

(2a2 − c2 sech2(bs))/
√
a2 − c2 sech2(bs). Thus, we obtain from(4.1), (4.37)and the for-

mula of Gauss that

Lss = i
2a2 − c2 sech2(bs)√
a2 − c2 sech2(bs)

Ls + L, a =
√

1 − b2,

Lst = (i
√
a2 − c2 sech2(bs) + b tanh(bs))Lt,

Ltt =
(

i
√
a2−c2 sech2(bs) cosh2(bs)−b

2
sinh(2bs)

)
Ls+if (t)Lt + cosh2(bs)L.

(4.82)

It follows from λ �= 2µ for case (I.ii) thatc �= 0. Moreover, sinceµ �= 0, we getb2 < 1
anda > 0. Solving the first two equations in(4.82)we get

L = c1
ib sinbs+

√
a2 cosh2 bs− c2

(
√
a2 cosh2 bs− c2 − a sinhbs)ia/b

+z(t) cosh(bs) exp
i

b

{
a sinh−1

{
a sinhbs√
a2 − c2

}

−c tanh−1

{
c sinhbs√

a2 cosh2 bs− c2

}}
(4.83)

for some constant vectorc1 and vector functionz(t). Substituting(4.83)into the last equation
in (4.82)givesz′′(t) − if (f )z′(t) − (b2 + c2)z(t) = 0.

By applying the first equation in(4.81) and (4.83), we get

〈z, z〉 = − 1

b2 + c2 , 〈c1, c1〉 = 2

b2 + c2 , 〈z′, z′〉 = 1,

〈c1, z〉 = 〈c1, iz〉 = 〈iz, z′〉 = 0.

Therefore,c1 is a space like vector andz(t) is a unit speed Legendre curve inH3
1(−b2 − c2) ⊂

C2
1. Hence the Lagrangian surface is congruent to case (43).
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Case (I.ii.b.3.β). a2 = c2. We may assume thatµ = a tanhbs andλ = a(tanh(bs) +
coth(bs)). Thus, obtain(4.1), (4.37)and the formula of Gauss yield

Lss = ia(tanh(bs) + coth(bs))Ls + L, a =
√

1 − b2, Lst = (ia+ b) tanh(bs)Lt,

Ltt = (ia− b) sinh(bs) coshbsLs + if (t)Lt + cosh2(bs)L. (4.84)

Solving the first two equations in(4.84)we get

L = c1(sinhbs)1+ia/b + z(t)(coshbs)1+ia/b (4.85)

for some constant vectorc1 and vector functionz(t). Substituting(4.85)into the last equation
in (4.84)givesz′′(t) − if (f )z′(t) − z(t) = 0.

By applying(4.85), we get

〈z, z〉 = −1, 〈c1, c1〉 = 〈z′, z′〉 = 1, 〈c1, z〉 = 〈c1, iz〉 = 〈iz, z′〉 = 0.

Therefore,c1 is a space like vector andz(t) is a unit speed Legendre curve inH3
1(−1) ⊂ C2

1.
Hence the Lagrangian surface is congruent to case (44).
Case (I.ii.b.4).K = b2 < µ2 − 1 on a neighborhoodW1,2 of a pointp ∈ W1. Without

loss of generality, we may assumeb > 0. From(4.10) and (4.61)we get

g = ds⊗ ds+ cos2(bs+ θ(t)) dt ⊗ dt, µ2 = a2 + p2(t) sec2(bs+ θ(t)),
a =

√
1 + b2, λ = µ−1a2 + µ, ϕ = f (t) sec(bs+ θ(t)). (4.86)

Sinceµ = µ(s) andp(t) sec(bs+ θ(t)) depend only onsaccording to the second equa-
tion in (4.86), p(t) andθ(t) both are constant as in case (I.ii.c.1). So, we haveθ = 0 after
applying a suitable translation ins. Hence,(4.86)become

g = ds⊗ ds+ cos2 bs dt ⊗ dt, (4.87)

λ = 2a2 + c2 sec2 bs√
a2 + c2 sec2 bs

, µ =
√
a2 + c2 sec2 bs, ϕ = f (t) secbs, (4.88)

wherec is a positive number. From(4.1), (4.87) and (4.88), we have

Lss = i
2a2 + c2 sec2 bs√
a2 + c2 sec2 bs

Ls + L, a =
√

1 + b2,

Lst = (i
√
a2 + c2 sec2 bs− b tanbs)Lt,

Ltt = (b sinbs+ i
√
c2 + a2 cos2 bs) cosbsLs + if (t)Lt + cos2 bsL. (4.89)

After solving the first two equations in(4.89)we obtain

L = (
√
a2 cos2 bs+ c2 + ia sinbs)a/b

{
c1(
√
c2 + a2 cos2 bs− ib sinbs)

+ z(t)(cosbs) exp i

{
c

b
tanh−1

(
c sinbs√

a2 cos2 bs+ c2
)}}

(4.90)
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for someC3-valued functionsz and constant vectorc1. Substituting(4.90) into the last
equation of(4.89)gives

z′′(t) − if (t)z′(t) + (b2 + c2)(a2 + c2)a/2bz(t) = 0 (4.91)

Since〈L,L〉 = −1, (4.87) and (4.90)imply that

〈z, z〉= − 〈c1, c1〉= (a2 + c2)−a/b

b2 + c2 , 〈z′, z′〉 = 1, 〈z, c1〉 = 〈z, ic1〉 = 〈iz, z′〉 = 0.

Thus,z(t) is a unit speed Legendre curve inS3((b2 + c2)(a2 + c2)a/b) ⊂ C2 andc1 is a
time-like vector, whereC2 is perpendicular toc1, ic1. Consequently, the Lagrangian surface,
restricted toW1,1, is congruent to case (45).
Case (I.ii.b.5).K = 0 andµ2 > 1 on a neighborhoodW1,3 of a pointp ∈ W1. In this

case, we obtain from(4.10) and (4.61)that

g = ds⊗ ds+ (s+ θ(t))2 dt ⊗ dt (respectively, g = ds⊗ ds+ dt ⊗ dt),

µ2 = 1 + p2(t)

(s+ θ(t))2 (respectively, µ2 = 1 + p2(t)),

ϕ = f (t)

s+ θ(t) (respectively, ϕ = f (t).) (4.92)

Sinceµ = µ(s) depends only ons, p(t) andθ(t) both are constant. So, we may assume
θ = 0 by applying a suitable translation ins. Hence,(4.92)yields

g = ds⊗ ds+ s2 dt ⊗ dt (respectively, g = ds⊗ ds+ dt ⊗ dt),

µ2 = 1 + b2s−2, ϕ = s−1f (t) (respectively, µ2 = c2, ϕ = f (t)),

λ = µ+ µ−1 (4.93)

for some real numberb > 0 andc > 1.
Case (I.ii.b.5.α).g = ds⊗ ds+ s2 dt ⊗ dt. We may putµ = √

s2 + b2/s andλ = (b2 +
2s2)/(s

√
s2 + b2). Thus,(4.1), (4.93)and the formula of Gauss yield

Lss = i
b2 + 2s2

s
√
s2 + b2

Ls + L, Lst = 1 + i
√
s2 + b2

s
Lt,

Ltt = s(i
√
s2 + b2 − 1)Ls + if (t)Lt + s2L. (4.94)

Solving the first and the second equations in(4.94)gives

L = z(t) s
1+ib ei

√
s2+b2

(b+ √
s2 + b2)ib

+ c1 ei
√
s2+b2

(1 − i
√
s2 + b2) (4.95)

for someC3
1-valued functionz(t) and vectorc1. Substituting(4.95)into the last equation in

(4.94), we findz′′(y) − if (t)z′(t) + (1 + b2)z(t) = 0.
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Since〈L,L〉 = −1, (4.93) and (4.95)that

〈z, z〉 = 1

1 + b2 , 〈z′, z′〉 = −〈c1, c1〉 = 1, 〈z, c1〉 = 〈z, ic1〉 = 〈iz, z′〉 = 0.

Thus,z(t) is a unit speed Legendre curve inS3(1 + b2) ⊂ C2 andc1 is a time-like vector
perpendicular toz, iz. Consequently, the surface is congruent to case (46).
Case (I.ii.b.5.β). g = ds⊗ ds+ dt ⊗ dt. Thus, we obtain from(4.3) thatλ = a− a−1.

Therefore,(4.1), (4.61)and the formula of Gauss imply that

Lss = i(c + c−1)Ls + L, Lst = icLt, Lvv = icLs + if (t)Lt + L. (4.96)

Solving the first and the second equations in(4.96)gives

L = c1 eis/c + z(t) eics (4.97)

for someC3
1-valued functionz(t) and vectorc1 ∈ C3. Also, by substituting(4.97)into the

last equation in(4.96), we findz′′(t) − if (t)z′(t) + (c2 − 1)z(t) = 0. If c2 �= 1, then we may
also find

〈z, z〉 = 1

c2 − 1
, 〈z′, z′〉 = 1, 〈c1, c1〉 = − c2

c2 − 1
,

〈z, c1〉 = 〈z, ic1〉 = 〈iz, z′〉 = 0.

Thus the surface is congruent to case (47) or case (58). Ifc2 = 1, then (4.96) gives case
(59).
Case (I.ii.b.6).K = −b2 < µ2 − 1on a neighborhoodW1,4 of a pointp ∈ W1. Without

loss of generality we may assumeb > 0. From(4.10) and (4.61)we get

g = ds⊗ ds+ cosh2(bs+ θ(t)) dt ⊗ dt,

µ2 = 1 − b2 + p2(t) sech2(bs+ θ(t)), ϕ = f (t)sech(bs+ θ(t)) (4.98)

for some functionp(t) andf(t). Sinceµ = µ(s), the second equation in(4.98)implies that
p andθ are constant. Thus, we haveθ = 0 by applying a suitable translation ins. Let us
denotep by c. Then we have

g = ds⊗ ds+ cosh2(bs) dt ⊗ dt, λ = µ2 + 1 − b2

µ
,

µ2 = 1 − b2 + c2 sech2(bs), ϕ = f (t)sech(bs), (4.99)

Since we haveλ �= µ for case (I.ii.b), we getb �= 1.
Case (I.ii.b.6.α). b > 1. In this case we obtain from(4.99)that

g = ds⊗ ds+ cosh2 bs dt ⊗ dt, ϕ = f (t)sechbs, λ = c2 sech2bs− 2a2√
c2 sech2bs− a2

,

µ =
√
c2 sech2bs− a2, a =

√
b2 − 1. (4.100)
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From(4.1), (4.100)and the formula of Gauss, we find

Lss = i
c2 sech2bs− 2a2√
c2 sech2bs− a2

Ls + L, a =
√
b2 − 1,

Lst = (i
√
c2 sech2bs− a2 + b tanhbs)Lt,

Ltt = (i
√
c2 − a2 cosh2 bs− b sinhbs) coshbsLs + if (t)Lt + cosh2 bsL. (4.101)

Solving the first and the second equations of this system gives

L = z(t)(coshbs) exp
i

b

{
c tan−1

(
c sinhbs√

c2 − a2 cosh2 bs

)

−a tan−1

(
a sinhbs√

c2 − a2 cosh2 bs

)}

+ c1

√
c2 − b2+ cosh2 bs exp[i{(a/b) cot−1((a sinhbs)/

√
c2 − a2 cosh2 bs)}]

exp[i{[a2(2c2−2a2 − 1)/2b2(c2 − a2)] cot−1((b sinbs)/
√
c2 − a2 cosh2 bs)

−[(2c2 − a2)/2b2(c2 − a2)] tan−1((b sinbs)/
√
c2 − a2 cosh2 bs)}]

for some vectorc1 and vector functionz(t). By substituting this into the third equation of
(4.101)we obtainz′′(t) − if (t)z′(t) + (c2 − b2)z(t) = 0.

If c2 �= b2, then from〈L,L〉 = −1, (4.100)and the expression ofL, we obtain

〈z, z〉 = −〈c1, c1〉 = 1

c2 − b2 , |z′|2 = 1, 〈z, c1〉 = 〈z, ic1〉 = 〈iz, z′〉 = 0.

Thus, the immersionL, restrictedW1,4, is congruent to case (48) or case (60). Ifc2 = b2,
then (4.101) gives (61).
Case (I.ii.b.6.β). b < 1. We obtain from(4.1), (4.99)and Gauss’ formula that

Lss = i
2a2 + c2 sech2bs√
a2 + c2 sech2bs

Ls + L, a =
√

1 − b2,

Lst = (i
√
a2 + c2 sech2bs+ b tanhbs)Lt,

Ltt = (i
√
c2 + a2 cosh2 bs− b sinhbs) coshbsLs + if (t)Lt + cosh2 bsL. (4.102)

Solving the first and the second equations of(4.102)gives

L = z(t)(coshbs) exp
i

b

{
c tan−1

(
c sinhbs√

c2 + a2 cosh2 bs

)

+a tanh−1

(
a sinhbs√

c2 + a2 cosh2 bs

)}
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+ c1

√
c2+a2 cosh2 bs exp[i{(a/b) coth−1((a sinhbs)/

√
c2 + a2 cosh2 bs)}]

exp[i{[a2(1−2a2 − 2c2)/2b2(a2 + c2)] cot−1((b sinbs)/
√
c2 + a2 cosh2 bs)

−[(a2 + 2c2)/2b2(a2 + c2)] tan−1((b sinbs)/
√
c2 + a2 cosh2 bs)}]

for some vectorc1 and vector functionz. By substituting this into the third equation of
(4.102)we obtainz′′(t) − if (t)z′(t) + (c2 − b2)z(t) = 0.

From〈L,L〉 = −1, (4.99)and the expression ofL, we obtain

〈z, z〉 = −〈c1, c1〉 = 1

c2 − b2 , |z′|2 = 1, 〈z, c1〉 = 〈z, ic1〉 = 〈iz, z′〉 = 0.

If c2 > b2, then c1 is a time-like vector andz(t) is a unit speed Legendre curve in
S3(c2 − b2). Hence, the immersionL, restrictedW1,4, is congruent to case (49).

If c2 < b2, thenc1 is a space-like vector andz(t) is a unit speed Legendre curve in
H3

1(c2 − b2). Hence, the immersionL, restrictedW1,4, is congruent to case (50).
Case (II). ∇e1e1 �= 0 on an open subsetV2 ⊂ V . In this case,ω2

1(e1) is never zero on
V2. Since Span{e1} and Span{e2} are of rank 1, there exists local coordinates{x, y} onV2
such that∂/∂x, ∂/∂y are parallel toe1, e2, respectively. Thus, the metric tensorg takes the
form:

g = E2 dx⊗ dx+G2 dy ⊗ dy. (4.103)

We may assume thatE,G are positive and∂/∂x = Ee1, ∂/∂y = Ge2. So, we have

ω1
2(e1) = Ey

EG
, ω2

1(e2) = Gx

EG
, Ey = ∂E

∂y
, Gx = ∂G

∂x
. (4.104)

If λ = 2µ, (4.3)givesK = µ2 − 1 which implies thatµ is constant. So, the first equation
in (4.2) andω2

1(e1) �= 0 giveϕ = 0 which contradicts toϕ �= 0. Hence, we haveλ �= 2µ.
Fromω2

1(e1) �= 0 and the second equation in(4.2), we finde2λ �= 0.
Case (II.i).µ = 0 onV2. It follows from (4.3) thatK = −1. Also,(4.2)gives

ϕω2
1(e1) = λω1

2(e2), e2λ = λω2
1(e1), e1ϕ = ϕω1

2(e2). (4.105)

From(4.104) and (4.105)we getλE = η(x) andϕG = k(y) for some functionsη, k. Hence
(4.103)becomes

g = η2(x)

λ2 dx⊗ dx+ k2(y)

ϕ2 dy ⊗ dy. (4.106)

If u andv are antiderivatives ofη andk, then(4.106) and (4.1)reduce to

g = λ−2 du⊗ du+ ϕ−2dv⊗ dv, (4.107)

h

(
∂

∂u
,
∂

∂u

)
= J ∂

∂u
, h

(
∂

∂u
,
∂

∂v

)
= 0, h

(
∂

∂v
,
∂

∂v

)
= J ∂

∂v
. (4.108)



432 B.-Y. Chen / Journal of Geometry and Physics 55 (2005) 399–439

By applying(4.107), (4.108)and the formula of Gauss, we obtain

Luu = (i − (ln λ)u)Lu + (ln ϕ)uLv + 1

λ2L, Luv = −(ln λ)vLu − (ln ϕ)uLv,

Lvv = (ln λ)vLu + (i − (ln ϕ)v)Lv + 1

ϕ2L. (4.109)

By applying(4.105) and (4.107), we find

λω2
1(e1) = ϕλv, ϕω1

2(e2) = λϕu, ϕ3λv = λ3ϕu. (4.110)

SinceK = −1, (4.107) and (4.110)imply that(
ϕλv

λ2

)
v

+
(
λϕu

ϕ2

)
u

= −1

λϕ
. (4.111)

If λv = 0, we getϕu = 0 from(4.110)which contradicts(4.111). Hence, we must have
λv �= 0. Similarly, we also haveϕu �= 0. So, the last equation in(4.110)gives

ϕλv

λ2 = λϕu

ϕ2 = f (u, v) (4.112)

for a non-zero functionf. It follows from (4.111) and (4.112)thatf is non-constant.
We divide case (II.i) into two cases.
Case (II.i.a).λ = ϕ �= 0 on a neighborhoodO1 of a point inW2,1. In this case, the last

equation in(4.110)reduces toλu = λv. Thus,λ = ϕ is a function ofs := u+ v. So,(4.111)
yields 2λ(s)λ′′(s) − 2λ′2(s) + 1 = 0. After solving this differential equation and applying
a suitable translation ins, we obtainλ = sinhbs/

√
2b for some positive numberb. Hence,

system(4.109)reduces to

Luu = (i − b coth(bu+ bv))Lu + b coth(bu+ bv)Lv + 2b2 csch2(bu+ bv)L,
Luv = −b coth(bu+ bv)(Lu + Lv),
Lvv = b coth bsLu + (i − b coth(bu+ bv))Lv + 2b2 csch2(bu+ bv)L.

If we put t = u− v as well ass = u+ v, then this system becomes

Lss =
(

i

2
− b coth bs

)
Ls + b2 csch2bsL, Lst =

(
i

2
− b coth bs

)
Lt,

Ltt =
(

i

2
+ b coth bs

)
Ls + b2 csch2bsL. (4.113)

After solving this system of partial differential equations we obtain

L = ( cschbs)

{
c1

√
(1 + 4b2) cosh2 bs− 1

exp(i tan−1(2b coth bs))

+eis/2
(
c2 cos

(
1

2

√
1 + 4b2t

)
+ c3 sin

(
1

2

√
1 + 4b2t

))}
. (4.114)
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It follows from (4.107) and (4.114)that

〈c1, c1〉 = −1

1 + 4b2 , 〈c2, c2〉 = 〈c3, c3〉 = 4b2

1 + 4b2 ,

〈c1, c2〉 = 〈c1, ic2〉 = 〈c1, c3〉 = 〈c1, ic3〉 = 〈c2, c3〉 = 〈c2, ic3〉 = 0.

Therefore, the Lagrangian surface restricted toO1 is congruent to case (51).
Case (II.i.b). λ �= ϕ on a neighborhoodO2 of a point inW2,1. Sinceϕ �= 0, (4.105)

implies thate2λ, e1ϕ andω2
1(e2) are non-zero onO2. By (4.107)we get

g = ρ2 du⊗ du+ ψ2 dv⊗ dv, ρ = λ−1, ψ = ϕ−1. (4.115)

Sinceϕu, λv �= 0 in case (II.i), we haveρv, ψu �= 0. Also, by applying(4.111) and (4.112)
we find

ψψu = ρρv,
(
ψu

ρ

)
u

+
(
ρv

ψ

)
v

= ρψ. (4.116)

If ρ = ρ(v), the first equation in(4.116)yieldsψ2 = 2uρ(v)ρ′(v) + 2q(v) for some func-
tion q(v). Without loss of generality, we may assume that

ψ =
√

2
√
uρ(v)ρ′(v) + q(v), λ = ρ−1(v), ϕ = ψ−1. (4.117)

Substituting these into the second equation in(4.117)yields

4ρ3ρ′2u2 − ρ′(ρρ′′ − ρ′2 − 8qρ2)u− 2qρ′′ + ρ′(q′ + ρρ′) + 4q2ρ = 0. (4.118)

Sinceρ andq are independent ofu andρ is non-zero,(4.118)implies that the functionρ
is constant andq = 0 which is a contradiction. Hence, we know thatρu �= 0. Similarly, we
also haveψv �= 0. Therefore, we must haveρu, ρv, ψu, ψv �= 0.

From(4.115) and (4.116), we find

∇∂/∂u ∂
∂u

= ρu

ρ

∂

∂u
− ψu

ψ

∂

∂v
, ∇∂/∂u ∂

∂v
= ρv

ρ

∂

∂u
+ ψu

ψ

∂

∂v
,

∇∂/∂v ∂
∂v

= −ρv
ρ

∂

∂u
+ ψv

ψ

∂

∂v
. (4.119)

Moreover, from(4.108), we have

h

(
∂

∂u
,
∂

∂u

)
= J ∂

∂u
, h

(
∂

∂u
,
∂

∂v

)
= 0, h

(
∂

∂v
,
∂

∂v

)
= J ∂

∂v
.

By combining this with(4.116), (4.119), and the formula of Gauss we obtain

Luu =
(

i + ρu

ρ

)
Lu − ψu

ψ
Lv + ρ2L, Luv = ρv

ρ
Lu + ψu

ψ
Lv,

Lvv = −ρv
ρ
Lu +

(
i + ψv

ψ

)
Lv + ψ2L. (4.120)
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A direct computation shows that the compatibility conditions:Luuv = Luvu andLuvv =
Lvvu hold if and only if(4.116)holds true. Thus, according toProposition 5.1, the Lagrangian
surface is locally given by case (52).
Case (II.ii). µ �= 0 andλ �= 2µ on a neighborhoodV2,3 of a pointp ∈ V2.
We divide this case into two cases:λ = µ or λ �= µ.
Case (II.ii.a).λ = µ. Let θ is a solution ofλ(1 − 2 cos2 θ) = ϕ sinθ cosθ and put ˆe1 =

cosθe1 + sinθe2, ê2 = − sinθe1 + cosθe2, then(4.1)yields

h(ê1, ê1) = λ̂J ê1, h(ê1, ê1) = 0, h(ê2, ê2) = ϕ̂J ê2

for some functionŝλϕ̂. So, this reduces to cases (I.ii.a) or (II.i).
Case (II.ii.b). λ �= µ. The assumption∇e1e1 �= 0 for case (II) and the second equation

in (4.2) imply e2λ �= 0. SinceK = λµ− µ2 − 1 is constant, we get

µejλ = (2µ− λ)ejµ, j = 1,2, (4.121)

which givese2µ �= 0 as well. By combining(4.2)with (4.121)we have

e1µ = ϕω2
1(e1) + (λ− 2µ)ω2

1(e2), e1ϕ = 4µω1
2(e1) + ϕω1

2(e2),

e2(ln µ) = ω1
2(e1). (4.122)

SinceK = λµ− µ2 − 1, the first two equations in(4.122)imply that

4µe1µ+ ϕe1ϕ = (4K − 4µ2 + 4 − ϕ2)ω2
1(e2). (4.123)

From the last equation of(4.122)and structure equation, we find d(µ−1ω1) = 0. Thus,
there exists a functionu such that du = ω1/µ and∂/∂u = µe1.
Case (II.ii.b.1). 4K = 4µ2 + ϕ2 − 4. In this case, we haveK > µ2 − 1. So, we may

assumeϕ = 2
√
K − µ2 + 1. Thus, byK = λµ− µ2 − 1 and(4.122), we have

µe1µ = (K − µ2 + 1)ω2
1(e2) − 2

√
K − µ2 + 1e2µ. (4.124)

LetΦ = Φ(u, v) be a solution of

(ln Φ)u = e2µ
2√

K − µ2 + 1
. (4.125)

Then, by applying∂/∂u = µe1, (4.123)–(4.125)and the last equation in(4.122), we obtain
[∂/∂u, (Φ/

√
K − µ2 + 1)e2] = 0. Hence, there is a coordinate system{u, v} so that∂/∂v =

(Φ/
√
K − µ2 + 1)e2. With respect to such system we have

g = µ2 du⊗ du+ Φ2

K − µ2 + 1
dv⊗ dv, (4.126)

∂Φ

∂u
= ∂µ2

∂v
�= 0, (4.127)

−KµΦ√
K − µ2 + 1

=
(

1

µ

(
Φ√

K − µ2 + 1

)
u

)
u

+
(
µv
√
K − µ2 + 1

Φ

)
v

. (4.128)
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Sinceϕ = 2
√
K − µ2 + 1, (4.1), (4.126)–(4.128)and the formula of Gauss yield

Luu =
{

i(K + µ2 + 1) + µu

µ

}
Lu − (K − µ2 + 1)µµv

Φ2 Lv + µ2L,

Luv = µv

µ
Lu + µ

{
iµ+ µu

K − µ2 + 1
+ 2µv
Φ

}
Lv,

Lvv = Φ

{
iΦ

K − µ2 + 1
− Φµu + 2(K − µ2 + 1)µv

µ(K − µ2 + 1)2

}
Lu

+
{

2iΦ+ µµv

K − µ2 + 1
+ Φv

Φ

}
Lv + Φ2

K − µ2 + 1
L. (4.129)

A long straightforward computation shows that the compatibility conditions:Luuv =
Luvu andLuvv = Lvvu hold if and only if both(4.127) and (4.128)hold. Therefore, in this
case the Lagrangian surface is locally given by case (53).
Case (II.ii.b.2).4K �= 4µ2 + ϕ2 − 4. From(4.123)we get

ω2
1(e2) = 4µe1µ+ ϕe1ϕ

4(K − µ2 + 1) − ϕ2 . (4.130)

Thus, by applying(4.121), (4.122) and (4.130), we find

ω1
2(e1) = e2(ln µ), ω2

1(e2) = e1(ln G), G = 1√
|4(K − µ2 + 1) − ϕ2|

,

(4.131)

which implies [µe1,Ge2] = 0. Thus there exists a coordinate system{u, v} with ∂/∂u =
µe1, ∂/∂v = Ge2. With respect to such coordinate system, we have

g = µ2 du⊗ du+ dv⊗ dv

|4(K − µ2 + 1) − ϕ2| . (4.132)

If 4(K − µ2 + 1)> ϕ2, then(4.1), (4.3), (4.132)and the formula of Gauss yield

Luu =
{

i(K + µ2 + 1) + µu

µ

}
Lu − {4(K − µ2 + 1) − ϕ2}µµvLv + µ2L,

Luv = µv

µ
Lu +

{
iµ2 + 4µµu + ϕϕu

4(K − µ2 + 1) − ϕ2

}
Lv,

Lvv =
{

i

4(K − µ2 + 1) − ϕ2 − 4µµu + ϕϕu
µ2(4(K − µ2 + 1) − ϕ2)2

}
Lu

+
{

iϕ√
4(K − µ2 + 1) − ϕ2

+ 4µµv + ϕϕv
4(K − µ2 + 1) − ϕ2

}
Lv

+ 1

4(K − µ2 + 1) − ϕ2L.
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A long straightforward computation shows that the compatibility conditions: (Luu)v =
(Luv)u and (Luv)v = (Lvv)u hold if and only ifµ andϕ satisfy

µv = Kϕu + ϕµµu − µ2ϕu

µ(4(K − µ2 + 1) − ϕ2)3/2
,

(
Gu

µ

)
u

+
(µv
G

)
v

= −KµG, (4.133)

whereG = 1/
√

4(K − µ2 + 1) − ϕ2. From these we conclude that the Lagrangian surface
is locally given by case (54).

If 4(K − µ2 + 1)< ϕ2, (4.132)becomes

g = µ2 du⊗ du+ dv⊗ dv

ϕ2 − 4(K − µ2 + 1)
. (4.134)

Hence, from(4.1), (4.3), (4.134)and the formula of Gauss, we obtain

Luu =
{

i
(
K + µ2 − 1

)
+ µu

µ

}
Lu + (4(K − µ2 + 1) − ϕ2)µµvLv + µ2L,

Luv = µv

µ
Lu +

{
iµ2 + 4µµu + ϕϕu

4(K − µ2 + 1) − ϕ2

}
Lv,

Lvv =
{

i

4(K − µ2 + 1) − ϕ2 + 4µµu + ϕϕu
µ2(4(K − µ2 + 1) − ϕ2)2

}
Lu

+
{

iϕ√
ϕ2 − 4(K − µ2 + 1)

+ 4µµv + ϕϕv
4(K − µ2 + 1) − ϕ2

}
Lv

+ 1

ϕ2 − 4(K − µ2 + 1)
L.

A long straightforward computation shows that the compatibility conditions: (Luu)v =
(Luv)u and (Luv)v = (Lvv)u hold if and only ifµ andϕ satisfy

µv = µ2ϕu −Kϕu − ϕµµu
µ(ϕ2 − 4(K − µ2 + 1))3/2

,

(
Gu

µ

)
u

+
(µv
G

)
v

= −KµG, (4.135)

whereG = 1/
√
ϕ2 − 4(K − µ2 + 1). From these we conclude that the Lagrangian surface

is locally given by case (55).
By long computations, we know that the surfaces given in Theorem 4.1 are Lagrangian

surfaces of constant curvature inCH2(−4).

5. Some existence results

Proposition 5.1. Let ρ = ρ(u, v) and ψ = ψ(u, v) be real-valued functions with
ρu, ρv, ψu, ψv �= 0 defined on a simply-connected open subset U ofR2 satisfying

ρρv = ψψu,
(
ρv

ψ

)
u

+
(
ρv

ψ

)
v

= ρψ. (5.1)
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ThenEρψ := (U, g0) with g0 = ρ2 du⊗ du+ ψ2 dv⊗ dv is of constant curvature−1.
Moreover, up to rigid motions onCH2(−4), there exists a unique Lagrangian isometric
immersionερψ : Eρψ → CH2(−4)whose second fundamental form satisfies

h

(
∂

∂u
,
∂

∂u

)
= J ∂

∂u
, h

(
∂

∂u
,
∂

∂v

)
= 0, h

(
∂

∂v
,
∂

∂v

)
= J ∂

∂v
. (5.2)

Proposition 5.2. Letµ = µ(u, v) andΦ = Φ(u, v) be real-valued functions defined on a
simply-connected open subset U ofR2 satisfying(

1

µ

(
Φ√

K − µ2 + 1

)
u

)
u

+
(
µv
√
K − µ2 + 1

Φ

)
v

= −µΦK√
K − µ2 + 1

,

∂Φ

∂u
= ∂µ2

∂v
�= 0,

where K is a real number greater thanµ2 − 1.ThenFKµΦ := (U, g1) with

g2 = µ2 du⊗ du+ Φ2

K − µ2 + 1
dv⊗ dv

is of constant curvatureK. Moreover, up to rigid motions, there exists a unique Lagrangian
isometric immersionfKµΦ : FKµΦ → CH2(−4) whose second fundamental form satisfies

h

(
∂

∂u
,
∂

∂u

)
= (K + µ2 + 1)J

∂

∂u
, h

(
∂

∂u
,
∂

∂v

)
= µ2J

∂

∂v
,

h

(
∂

∂v
,
∂

∂v

)
=
(

Φ

K − µ2 + 1

)
J
∂

∂u
+ 2ΦJ

∂

∂v
. (5.3)

Proposition 5.3. Letµ = µ(u, v) andϕ = ϕ(u, v) be real-valued functions defined on a
simply-connected open subset U ofR2 satisfying

µv = Kϕu + ϕµµu − µ2ϕu

µ(4(K − µ2 + 1) − ϕ2)3/2
�= 0,

(
Gu

µ

)
u

+
(µv
G

)
v

= −KµG (5.4)

withG = 1/
√

4(K − µ2 + 1) − ϕ2 andKa real number greater thanµ2 − 1 + ϕ2/4.Then
GKµϕ := (U, g2) with g2 = µ2 du⊗ du+G2 dv⊗ dv has constant curvature K. Moreover,
up to rigid motions, there exists a unique Lagrangian isometric immersiongKµϕ : GKµϕ →
CH2(−4)whose second fundamental form satisfies

h

(
∂

∂u
,
∂

∂u

)
= (K + µ2 + 1)J

∂

∂u
, h

(
∂

∂u
,
∂

∂v

)
= µ2J

∂

∂v
,

h

(
∂

∂v
,
∂

∂v

)
= 1

4(K − µ2 + 1) − ϕ2J
∂

∂u
+ 1√

4(K − µ2 + 1) − ϕ2
J
∂

∂v
. (5.5)
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Proposition 5.4. Letµ = µ(u, v) andϕ = ϕ(u, v) be real-valued functions defined on a
simply-connected open subset U ofR2 satisfying

µv = µ2ϕu −Kϕu − ϕµµu
µ(ϕ2 − 4(K − µ2 + 1))3/2

�= 0,

(
Gu

µ

)
u

+
(µv
G

)
v

= −KµG (5.6)

with G = 1/
√
ϕ2 − 4(K − µ2 + 1) and K a realnumber less thanµ2 − 1 + ϕ2/4. Then

HKµϕ := (U, g3) with metric g3 = µ2 du⊗ du+G2 dv⊗ dv has constant curvature K.
Moreover, up to rigid motions, there exists a unique Lagrangian isometric immersion
hKµϕ : HKµϕ → CH2(−4)whose second fundamental form satisfies

h

(
∂

∂u
,
∂

∂u

)
= (K + µ2 + 1)J

∂

∂u
, h

(
∂

∂u
,
∂

∂v

)
= µ2J

∂

∂v
,

h

(
∂

∂v
,
∂

∂v

)
= 1

ϕ2 − 4(K − µ2 + 1)
J
∂

∂u
+ 1√

ϕ2 − 4(K − µ2 + 1)
J
∂

∂v
. (5.7)

Since these propositions can be proved by applying the existence and uniqueness theorem
of Lagrangian immersions (cf.[6]) in a way similar to those in Section 6 of[4], so we omit
their proofs.

Note added in proof

In a forthcoming article we will provide more families of Lagrangian surfaces of constant
curvature inCH2(−4). These additional families together with those given in Theorem 4.1
provide us the complete list of Lagrangian surfaces of contant curvature inCH2(−4).
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